

Linux /dev/random
A New Approach

Stephan Müller
<smueller@chronox.de>

 2

Agenda
● LRNG Goals
● LRNG Design
● Initial Seeding Strategies
● Entropy Sources

 3

LRNG Goals
● Sole use of cryptography for data processing
● High-Performance lockless IRQ handler
● Test interfaces for all LRNG processing steps
● Power-up and runtime tests
● Compile-time enabling of API and ABI compliant drop-in replacement of existing /dev/random
● Flexible configuration supporting wide range of use cases
● Runtime selection of cryptographic implementations
● Clean architecture – all permutations of options of the LRNG always lead to a secure random bit

generation
● Standards compliance: SP800-90A/B/C, AIS 20/31, FIPS IG 7.19 / D.K (use of DRBG as

conditioner)

 4

LRNG Design
● 6 Entropy Sources

– 4 external

– 2 internal

– All ES treated equally

– No domination by any ES – seeding
triggered by boot process or DRNG

● All ES can be selectively disabled at
compile time

● ES data fed into DRNG

● DRNG accessible with APIs

Hash

Entropy Estim.
IRQ Noise

HW RNG
ES

CPU RNG
ES

...

User Space
Writes
IOCTL

Collection Pool

CPU ESIRQ ES

Temorary
Seed Buffer

Generate

DRNG

(Re)Seeding

Other
Event Data

Event Value

Hash

TimeCPU Jitter ES

CPU Jitter
ES

Health Test

Aux Pool ES

...

per-CPU pools

Scheduler ES

Scheduler
Noise

...
Collection Pool

Hash

Legacy
RNG ES

Legacy RNG ES

per-CPU pools

 5

DRNG Output APIs
● Blocking APIs – deliver data only after fully initialized and fully seeded

– lrng_get_random_bytes_full in-kernel API
– When /dev/random compliant API enabled:

● /dev/random
● getrandom() system call
● get_random_bytes in-kernel API after being triggered with add_random_ready_callback or after rng_is_initialized returns true

● Prediction Resistance API – deliver data only after fully initialized and successful reseed returning at most
data equal to the amount of entropy

– Separate DRNG instance operating with prediction resistance generating at most as much data as seed entropy was
inserted

– Using /dev/random with O_SYNC
– Using getrandom(2) with flag GRND_RANDOM
– Compliant with:

● FIPS IG 7.19 / D.K to use DRBG as conditioning component for seeding other DRBGs
● German AIS 20/31 (2011) NTG.1 requirements

● Get seed: getrandom(2) with flag GRND_SEED to obtain data from entropy sources directly
● All other APIs deliver data without blocking until complete initialization

– No guarantee of LRNG being fully initialized / seeded

 6

DRNG Seeding
● Temporary seed buffer: concatenation of output from all ES
● Seeding during boot: when 32/128/256 bits of entropy are available
● Seeding at runtime

– After 220 generate requests or 10 minutes

– After forced reseed by user space

– After new DRNG is loaded

– At least 128 bits (SP800-90C mode: LRNG security strength) of total entropy must be available

– 256 bits of entropy requested from each ES – ES may deliver less

– Seed operation occurs when DRNG is requested to produce random bits

– DRNG returns to not fully seeded when last seed with full entropy was > 230 generate operations ago

– Pictures shows regular and SP800-90C initial seeding behavior

 7

Initial Seeding Strategy I
Default Operation

● DRNG is initially seeded with at least 32 bits of entropy

● DRNG is minimally seeded with at least 128 bits of entropy

● DRNG is fully seeded with 256 bits of entropy

● Blocking interfaces released after DRNG is fully seeded

– Forced seeding with available entropy to achieve fully seeded level

● Default applied

– Either no specific seeding strategy compiled

– Or specific seeding strategy is not enabled at boottime

 8

Initial Seeding Strategy II
Entropy Source Oversampling

● Initial / minimal seeding steps apply – fully
seeded step changed

● Compile time option
– Function only enabled in FIPS mode
– Function only enabled if message digest of conditioner >= 384 bits

● Final conditioning: s + 64 bit
● Initial DRNG seeding: every entropy source requested for s +

128 bits
– Every ES alone could provide all required entropy

● All ES data concatenated into seed buffer
● Runtime debug mode: display of all processing steps
● SP800-90C compliance:

– SP800-90A DRBG with 256-bit strength / SHA-512 vetted
conditioning component

– Complies with RBG2(NP) per default
– Can be configured to provide RBG2(P)

● Can be used in parallel with seeding strategy III

 9

Initial Seeding Strategy III
Two Entropy Sources

● Initial / minimal seeding steps apply unaltered – fully
seeded step changed

● Compile time option

– Function only enabled with lrng_es_mgr.ntg1=1

● Initial DRNG seeding: two entropy sources
must deliver 220 bits of entropy each

● All ES data concatenated into seed buffer

● Runtime debug mode: display of all
processing steps

● German AIS 20/31 compliance

– Caveat: Applies to draft version of AIS20/31 as of September 2022

– NTG.1: LRNG configuration ensures two entropy sources can reach at least 220 bits each

– PTG.3 / DRG.4: LRNG can be configured to provide a PTG.3 or DRG.4

● Can be used in parallel with seeding strategy II

● German AIS 20/31 compliance (2011): access /dev/random with O_SYNC or getrandom(2) with GRND_RANDOM

 10

DRNG Management
● One DRNG per NUMA node

● Hash contexts NUMA-node local

● Each DRNG initializes from entropy sources

● Sequential initialization of DRNG – first is Node 0

● If DRNG on one NUMA node is not yet fully seeded → use of DRNG(Node 0)

● Each DRNG instance managed independently

● To prevent reseed storm – reseed threshold different for each node
– Node 0: 600 seconds

– Node 1: 700 seconds

– …

● NUMA support code only compiled if CONFIG_NUMA → only one DRNG present

DRNG
Node 0

DRNG
Node 1

DRNG
Node 2

 11

Data Processing Primitives
● Sole use of cryptographic mechanisms for data

compression

● Cryptographic primitives Boot-Time / Runtime switchable

– Switching support is compile-time option

– DRNG, Conditioning hash

– Built-in: ChaCha20 DRNG / SHA-256

– Available:
● SP800-90A DRBG (CTR/Hash/HMAC) using accelerated AES / SHA primitive,

accelerated SHA-512 conditioning hash

● Hardware DRNG may be used (e.g. CPACF)

● Well-defined API to allow other cryptographic primitive implementations

● Complete cryptographic primitive testing available

– Full ACVP test harness available: https://github.com/smuellerDD/acvpparser

– ChaCha20 DRNG userspace implementation: https://github.com/smuellerDD/chacha20_drng

● Other data processing primitives

– Concatenation of data

– Truncation of message digest to heuristic entropy value

● Entropy behavior of all data processing primitives based on fully understood and uncontended operations

constant

constant

constant

constant

key

key

key

key

key

key

key

key

counter

nonce

nonce

nonce

chacha20_
state

„Expand
32-byte k“

0

0

0

(Re)Seed

„Expand
32-byte k“

+(updates)

+(number
 of update

ops)

lrng_cc20_
init_state

ChaCha20
Output

Output Buffer

ChaCha20
State

„Expand
32-byte k“

+1

+1

ChaCha20
State

ChaCha20
Output

Backward Secrecy

C
ha

C
ha

20
 B

lo
ck

C
ha

C
ha

20
 U

pd
at

e

C
ha

C
ha

20
 B

lo
ck

One invocation of lrng_cc20_generate_helper

https://github.com/smuellerDD/acvpparser
https://github.com/smuellerDD/chacha20_drng

 12

External Entropy Sources
● Use without additional conditioning – fast source

– Jitter RNG with asynchronous operation

– Kernel RNG (mutually exclusive with internal IRQ ES)

– CPU (e.g. Intel RDSEED, POWER DARN, ARM SMC Calling Convention or RNDR register)

– Data immediately available when LRNG requests it

● Additional conditioning – slow source

– RNGDs

– In-kernel hardware RNG drivers

– All received data added to “auxiliary pool“ with hash update operation

– Data “trickles in” over time

● Every entropy source has individual entropy estimate

– Taken at face value – each ES requires its own entropy assessment

HW RNG
Noise

User Space
Writes
IOCTLHash Init

Hash Update

Hash Update

Hash Update

Hash Final

Hash Init

Hash Update

Kernel Start

...

User Space
Writes
IOCTL

Auxiliary Pool

 13

Internal ES:
Interrupts

● Interrupt timing

– All interrupts are treated as one entropy
source

● Mutually exclusive with Kernel RNG ES

● Data collection executed in IRQ context

● Data compression executed partially in IRQ and process context

● Data compression is a hash update operation

● High performance: up to twice as fast as legacy /dev/random in IRQ context with
LRNG_CONTINUOUS_COMPRESSION enabled

– Even faster without continuous compression

 14

Internal ES: IRQ
Data Processing

● 8 LSB of time stamp divided by
GCD concatenated into per-CPU
collection pool

– Entropy estimate

– Health test

● 32 bits of other event data concatenated into per-CPU
collection pool

● When array full → conditioned into per-CPU entropy pool

– When entropy is required → conditioning of all entropy pools into
one message digest

– Addition of all per-CPU entropy estimates

Entropy Estim.Entropy Estim.

IRQ

... CPU 0 Collection Pool

Other
Event Data/ GCD & 0xFF

Health TestHealth Test

Hash

64-bit
Cycle
Count

...

CPU 0
Entropy Pool

Hash Interrupt ES
Seed DataHash

CPU 1
Entropy Pool

Hash
CPU N

Entropy Pool

...

IRQ Context CPU 0

Process Contextif LRNG_CONTINUOUS_COMPRESSION_ENABLED
 IRQ Context
else
 Process Context

32-bit

Hash Init

Hash Update

Hash Update

Hash Update

Hash Final

Hash Init Digest CPU0

Hash Update

Kernel Start

...

...

...

...

Filled Collection Pool Instances

CPU 0

Entropy Pool

Digest CPUn

Digest CPU1 CPU 1

CPU n

 15

Internal ES:
Scheduler Events

● Scheduler-based context switch timing

– All context switches are treated as one entropy
source

● Data collection executed in scheduler context

– Collection: adding data into collection array → high-performance (couple of
cycles)

● Data compression executed in process context during reseeding of
DRNG

● Data compression is a hash operation

 16

Internal ES: Scheduler
Data Processing

● 8 LSB of time stamp divided by
GCD concatenated into per-CPU
collection pool

– Entropy estimate

– Health test

● When array full → overwriting of oldest
value

● When entropy is required → conditioning
of all entropy pools into
one message digest

– Addition of all per-CPU entropy estimates

Entropy Estim.

Context
Switch

... CPU 0 Collection Pool

/ GCD & 0xFF

Health Test

64-bit
Cycle
Count

...

Hash Scheduler ES
Seed Data

...

Scheduler Execution CPU 0

Process Context

...CPU 1 Collection Pool

...CPU 2 Collection Pool

...CPU N Collection Pool

Scheduler Execution CPU x

Hash Init

Hash Update

Hash Final

Hash Init Digest CPU0

Hash Update

Kernel Start

...
Filled Collection Pool Instance

CPU 0

Entropy Pool

Digest CPUn

Digest CPU1 CPU 1

CPU n

 17

Internal ES Testing
Interfaces

● Testing code is compile time option

● Access via DebugFS

● Testing supports data collection at boot time and runtime:

– Raw unprocessed entropy time stamps for IRQ ES

– Raw auxiliary IRQ data

– Raw unprocessed entropy time stamps for Scheduler ES

– Performance data for LRNG’s IRQ handler

– Performance data for LRNG’s Scheduler handler

● Hash testing interface for built-in SHA-256

● Full SP800-90B assessment documentation

● Raw entropy collection and analysis tools
provided

 18

Internal ES Health Test
● Health test compile-time configurable

● Power-Up self tests
– All cryptographic mechanisms

– Time stamp management

● APT / RCT
– Intermittent and permanent health failures

● Time-Stamp Pattern detection: 1st/2nd/3rd discrete
derivative of time ≠ 0

● Blocking interface: Wait until APT power-up testing
complete

● Provides SP800-90B compliance of internal ES

 19

General Testing
● Automated regression test suite covering the different options of LRNG

● Locking torture test of loading/unloading DRNG
extensions under full load

● Applied kernel framework tests

– KASAN

– UBSAN

– Lockdep

– Memory leak detector

– Sparse

● Performance tests of DRNG

● Syscall validation testing

● Test of LRNG behavior in atomic
contexts

 20

LRNG - Resources
● Code / Tests / Documentation: https://github.com/smuellerDD/lrng

● Testing conducted on

– Intel x86, AMD, ARM, MIPS, POWER LE / BE,
IBM Z, RISC-V

– Embedded systems and Big Iron

– Large NUMA systems with up to 160 CPUs,
8 nodes

● Backport patches available

– LTS: 6.6, 6.1, 5.15, 5.10, 5.4, 4.19, 4.14

https://github.com/smuellerDD/lrng

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20

