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LRNG Goals
● Sole use of cryptography for data processing
● High-Performance lockless IRQ handler
● Test interfaces for all LRNG processing steps
● Power-up and runtime tests
● Compile-time enabling of API and ABI compliant drop-in replacement of existing /dev/random
● Flexible configuration supporting wide range of use cases
● Runtime selection of cryptographic implementations
● Clean architecture – all permutations of options of the LRNG always lead to a secure random bit 

generation
● Standards compliance: SP800-90A/B/C, AIS 20/31, FIPS IG 7.19 / D.K (use of DRBG as 

conditioner)
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LRNG Design
● 6 Entropy Sources

– 4 external

– 2 internal

– All ES treated equally

– No domination by any ES – seeding 
triggered by boot process or DRNG

● All ES can be selectively disabled at 
compile time

● ES data fed into DRNG

● DRNG accessible with APIs
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DRNG Output APIs
● Blocking APIs – deliver data only after fully initialized and fully seeded

– lrng_get_random_bytes_full in-kernel API
– When /dev/random compliant API enabled:

● /dev/random
● getrandom() system call
● get_random_bytes in-kernel API after being triggered with add_random_ready_callback or after rng_is_initialized returns true 

● Prediction Resistance API – deliver data only after fully initialized and successful reseed returning at most 
data equal to the amount of entropy

– Separate DRNG instance operating with prediction resistance generating at most as much data as seed entropy was 
inserted

– Using /dev/random with O_SYNC
– Using getrandom(2) with flag GRND_RANDOM
– Compliant with:

● FIPS IG 7.19 / D.K to use DRBG as conditioning component for seeding other DRBGs
● German AIS 20/31 (2011) NTG.1 requirements

● Get seed: getrandom(2) with flag GRND_SEED to obtain data from entropy sources directly
● All other APIs deliver data without blocking until complete initialization

– No guarantee of LRNG being fully initialized / seeded
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DRNG Seeding
● Temporary seed buffer: concatenation of output from all ES
● Seeding during boot: when 32/128/256 bits of entropy are available
● Seeding at runtime

– After 220 generate requests or 10 minutes

– After forced reseed by user space

– After new DRNG is loaded

– At least 128 bits (SP800-90C mode: LRNG security strength) of total entropy must be available

– 256 bits of entropy requested from each ES – ES may deliver less

– Seed operation occurs when DRNG is requested to produce random bits

– DRNG returns to not fully seeded when last seed with full entropy was > 230 generate operations ago 

– Pictures shows regular and SP800-90C initial seeding behavior
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Initial Seeding Strategy I
Default Operation

● DRNG is initially seeded with at least 32 bits of entropy

● DRNG is minimally seeded with at least 128 bits of entropy

● DRNG is fully seeded with 256 bits of entropy

● Blocking interfaces released after DRNG is fully seeded

– Forced seeding with available entropy to achieve fully seeded level

● Default applied

– Either no specific seeding strategy compiled

– Or specific seeding strategy is not enabled at boottime
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Initial Seeding Strategy II
Entropy Source Oversampling

● Initial / minimal seeding steps apply – fully
seeded step changed

● Compile time option
– Function only enabled in FIPS mode
– Function only enabled if message digest of conditioner >= 384 bits

● Final conditioning: s + 64 bit
● Initial DRNG seeding: every entropy source requested for s + 

128 bits
– Every ES alone could provide all required entropy

● All ES data concatenated into seed buffer
● Runtime debug mode: display of all processing steps
● SP800-90C compliance:

– SP800-90A DRBG with 256-bit strength / SHA-512 vetted 
conditioning component

– Complies with RBG2(NP) per default
– Can be configured to provide RBG2(P)

● Can be used in parallel with seeding strategy III
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Initial Seeding Strategy III
Two Entropy Sources

● Initial / minimal seeding steps apply unaltered – fully
seeded step changed

● Compile time option

– Function only enabled with lrng_es_mgr.ntg1=1

● Initial DRNG seeding: two entropy sources
must deliver 220 bits of entropy each

● All ES data concatenated into seed buffer

● Runtime debug mode: display of all
processing steps

● German AIS 20/31 compliance

– Caveat: Applies to draft version of AIS20/31 as of September 2022

– NTG.1: LRNG configuration ensures two entropy sources can reach at least 220 bits each

– PTG.3 / DRG.4: LRNG can be configured to provide a PTG.3 or DRG.4

● Can be used in parallel with seeding strategy II

● German AIS 20/31 compliance (2011): access /dev/random with O_SYNC or getrandom(2) with GRND_RANDOM
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DRNG Management
● One DRNG per NUMA node

● Hash contexts NUMA-node local

● Each DRNG initializes from entropy sources

● Sequential initialization of DRNG – first is Node 0

● If DRNG on one NUMA node is not yet fully seeded → use of DRNG(Node 0)

● Each DRNG instance managed independently

● To prevent reseed storm – reseed threshold different for each node
– Node 0: 600 seconds

– Node 1: 700 seconds

– …

● NUMA support code only compiled if CONFIG_NUMA → only one DRNG present
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Data Processing Primitives
● Sole use of cryptographic mechanisms for data

compression

● Cryptographic primitives Boot-Time / Runtime switchable

– Switching support is compile-time option

– DRNG, Conditioning hash

– Built-in: ChaCha20 DRNG / SHA-256

– Available:
● SP800-90A DRBG (CTR/Hash/HMAC) using accelerated AES / SHA primitive,

accelerated SHA-512 conditioning hash

● Hardware DRNG may be used (e.g. CPACF)

● Well-defined API to allow other cryptographic primitive implementations

● Complete cryptographic primitive testing available

– Full ACVP test harness available: https://github.com/smuellerDD/acvpparser

– ChaCha20 DRNG userspace implementation: https://github.com/smuellerDD/chacha20_drng

● Other data processing primitives

– Concatenation of data

– Truncation of message digest to heuristic entropy value

● Entropy behavior of all data processing primitives based on fully understood and uncontended operations
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External Entropy Sources
● Use without additional conditioning – fast source

– Jitter RNG with asynchronous operation

– Kernel RNG (mutually exclusive with internal IRQ ES)

– CPU (e.g. Intel RDSEED, POWER DARN, ARM SMC Calling Convention or RNDR register)

– Data immediately available when LRNG requests it

● Additional conditioning – slow source

– RNGDs

– In-kernel hardware RNG drivers

– All received data added to “auxiliary pool“ with hash update operation

– Data “trickles in” over time

● Every entropy source has individual entropy estimate

– Taken at face value – each ES requires its own entropy assessment
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Internal ES:
Interrupts

● Interrupt timing

– All interrupts are treated as one entropy
source

● Mutually exclusive with Kernel RNG ES

● Data collection executed in IRQ context

● Data compression executed partially in IRQ and process context

● Data compression is a hash update operation

● High performance: up to twice as fast as legacy /dev/random in IRQ context with 
LRNG_CONTINUOUS_COMPRESSION enabled

– Even faster without continuous compression
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Internal ES: IRQ
Data Processing

● 8 LSB of time stamp divided by
GCD concatenated into per-CPU
collection pool

– Entropy estimate

– Health test

● 32 bits of other event data concatenated into per-CPU
collection pool

● When array full → conditioned into per-CPU entropy pool

– When entropy is required → conditioning of all entropy pools into
one message digest

– Addition of all per-CPU entropy estimates
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Internal ES:
Scheduler Events

● Scheduler-based context switch timing

– All context switches are treated as one entropy
source

● Data collection executed in scheduler context

– Collection: adding data into collection array → high-performance (couple of 
cycles)

● Data compression executed in process context during reseeding of 
DRNG

● Data compression is a hash operation
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Internal ES: Scheduler
Data Processing

● 8 LSB of time stamp divided by
GCD concatenated into per-CPU
collection pool

– Entropy estimate

– Health test

● When array full → overwriting of oldest 
value

● When entropy is required → conditioning 
of all entropy pools into
one message digest

– Addition of all per-CPU entropy estimates
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Internal ES Testing
Interfaces

● Testing code is compile time option

● Access via DebugFS

● Testing supports data collection at boot time and runtime:

– Raw unprocessed entropy time stamps for IRQ ES

– Raw auxiliary IRQ data

– Raw unprocessed entropy time stamps for Scheduler ES

– Performance data for LRNG’s IRQ handler

– Performance data for LRNG’s Scheduler handler

● Hash testing interface for built-in SHA-256

● Full SP800-90B assessment documentation

● Raw entropy collection and analysis tools
provided
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Internal ES Health Test
● Health test compile-time configurable

● Power-Up self tests
– All cryptographic mechanisms

– Time stamp management

● APT / RCT
– Intermittent and permanent health failures

● Time-Stamp Pattern detection: 1st/2nd/3rd discrete 
derivative of time ≠ 0

● Blocking interface: Wait until APT power-up testing 
complete

● Provides SP800-90B compliance of internal ES
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General Testing
● Automated regression test suite covering the different options of LRNG

● Locking torture test of loading/unloading DRNG
extensions under full load

● Applied kernel framework tests

– KASAN

– UBSAN

– Lockdep

– Memory leak detector

– Sparse

● Performance tests of DRNG

● Syscall validation testing

● Test of LRNG behavior in atomic
contexts
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LRNG - Resources
● Code / Tests / Documentation: https://github.com/smuellerDD/lrng

● Testing conducted on

– Intel x86, AMD, ARM, MIPS, POWER LE / BE,
IBM Z, RISC-V

– Embedded systems and Big Iron

– Large NUMA systems with up to 160 CPUs,
8 nodes

● Backport patches available

– LTS: 6.6, 6.1, 5.15, 5.10, 5.4, 4.19, 4.14

https://github.com/smuellerDD/lrng
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