Linux Random Number Generator — A New
Approach

Stephan Miiller <smueller@chronox.de>

February 7, 2021

Abstract

The venerable Linux /dev/random has served users of cryptographic
mechanisms well for a long time. The random number generator is well
understood how entropic data is delivered. In the last years, however,
the Linux /dev/random showed signs of age where it has challenges to
cope with modern computing environments ranging from tiny embedded
systems, over new hardware resources such as SSDs, up to massive par-
allel systems as well as virtualized environments. This paper proposes a
new approach to entropy collection in the Linux kernel with the inten-
tion of addressing all identified shortcomings of the legacy /dev/random
implementation. The new Linux Random Number Generator’s design is
presented and all its cryptographic aspects are backed with qualitative
assessment and complete quantitative testing. The test approaches are
explained and the test code is made available to allow researchers to re-
perform these tests.

Contents

1 Introduction

1.1 Linux /dev/random Status Quo . . . . . .. .. ... ... .. ..
1.2 A New Approach . . . . . . .. .. ... ... .. ...
1.3 Advantages Introduced by LRNG . . . . . .. .. ... ... ...
1.4 Document Structure . . . . ... ... .. ... ...

LRNG Design

2.1 LRNG Components . . . . . ... .. ... ... ... .....

2.2 LRNG Data Processing . . . . ... ... ... ... ... ...

2.3 LRNG Architecture . . . .. .. .. ... ...
2.3.1 Minimally Versus Fully Seeded Level . . . . . .. ... ..
2.3.2 Seeding Examples . . . ... .. ... ... .. ......
2.3.3 NUMA Systems . . . ... ... ... ... ....
2.34 Flexible Design . . . . . .. ... ... L.
2.3.5 Covered Design Concerns of Legacy /dev/random

2.4 LRNG Data Structures . . . . ... ... ... ... ... ...

2.5 Imterrupt Processing . . . . . ... ... ... .
2.5.1 Entropy Amount of Interrupts . . . . ... ... .. ...
2.5.2 Entropy of CPU Noise Source . . . . . ... ... .....

WO



2.6
2.7
2.8

2.9

2.10

2.11
2.12
2.13
2.14
2.15

2.5.3 Entropy of CPU Jitter RNG Noise Source . . . . ... ..
2.5.4 Health Tests . . . .. ... ... ... ... ...,
HID Event Processing . . . . . . ... .. .. ... .. ......
DRNG Seeding Operation . . . . . . ... .. ... .. ......
LRNG-external Noise Sources . . . . . .. .. .. ... ......
2.8.1 Kernel Hardware Random Number Generator Drivers

2.8.2 Injecting Data From User Space . .. ... ........
2.8.3 Auxiliary Pool . . . ... ... oo
DRBG . . . . e
2.9.1 /dev/urandom and get_random_bytes_full .. .. ...
29.2 /dev/random . . . . ... ... ...
ChaCha20 DRNG . . . .. ... ..
2.10.1 State Update Function . . . . . . ... .. ... ... ...
2.10.2 Seeding Operation . . . . . ... .. ... ... .. ....
2.10.3 Generate Operation . . . . . ... ... ... .. .....
PRNG Registered with Linux Kernel Crypto APT . . . . ... ..
get_random_bytes in Atomic Contexts . . . ... ........
LRNG External Interfaces . . . . . . .. ... ... .. ... ...
LRNG Self-Tests . . . . . . . . . .
LRNG Test Interfaces . . . . ... ... ... ... ... ..

Standards Compliance

3.1

3.2

FIPS 140-2 Compliance . . . . . . . .. ... .. ... .. ....
3.1.1 FIPS 140-2 IG 7.18 Requirement For Statistical Testing .
3.1.2 FIPS 140-2 IG 7.18 Heuristic Analysis . . . . . .. .. ..
3.1.3 FIPS 140-2 IG 7.18 Additional Comment 1 . . . . . . ..
3.1.4 FIPS 140-2 IG 7.18 Additional Comment 2 . . . . . . ..
3.1.5 FIPS 140-2 IG 7.18 Additional Comment 3 . . . . . . ..
3.1.6 FIPS 140-2 IG 7.18 Additional Comment 4 . . . . . . ..
3.1.7 FIPS 140-2 IG 7.18 Additional Comment 6 . . . . . . ..
3.1.8 FIPS 140-2 IG 7.18 Additional Comment 9 . . . . . . ..
SP800-90B Compliance . . . . . . ... ... ... .. ......
3.2.1 SP800-90B Section 3.1.1 . . . . . . ... ... ... ....
3.2.2 SP800-90B Section 3.1.2 . . . . . . .. .. ... ... ...
3.2.3 SP800-90B Section 3.1.3 . . . . . . . ... ... ... ...
3.2.4 SP800-90B Section 3.1.4 . . . . .. ... ... ... ...
3.2.5 SP800-90B Section 3.1.5 . . . . . . ... ... ... ...
3.2.6  SP800-90B Section 3.1.5.1 . . . . . .. ... ... .....
3.2.7 SP800-90B Section 3.1.6 . . . . . . ... ... ... ....
3.2.8 SP800-90B Section 3.2.1 Requirement 1 . . . . . . . . ..
3.2.9 SP800-90B Section 3.2.1 Requirement 2 . . . . . . .. ..
3.2.10 SP800-90B Section 3.2.1 Requirement 3 . . . . . . .. ..
3.2.11 SP800-90B Section 3.2.1 Requirement 4 . . . . . .. ...
3.2.12 SP800-90B Section 3.2.1 Requirement 5 . . . . . . . . ..
3.2.13 SP800-90B Section 3.2.1 Requirement 6 . . . . . . .. ..
3.2.14 SP800-90B Section 3.2.1 Requirement 7 . . . . . . .. ..
3.2.15 SP800-90B Section 3.2.2 Requirement 1 . . . . . . .. ..
3.2.16 SP800-90B Section 3.2.2 Requirement 2 . . . . . . .. ..
3.2.17 SP800-90B Section 3.2.2 Requirement 3 . . . . . . .. ..
3.2.18 SP800-90B Section 3.2.2 Requirement 4 . . . . . . .. ..



5 O aQ & »

3.2.19 SP800-90B Section 3.2.2 Requirement 5 . . . . . . .. .. 52
3.2.20 SP800-90B Section 3.2.2 Requirement 6 . . . . . .. ... 52
3.2.21 SP800-90B Section 3.2.2 Requirement 7 . . . . . . . . .. 52
3.2.22 SP800-90B Section 3.2.3 Requirement 1 . . . . . . .. .. 52
3.2.23 SP800-90B Section 3.2.3 Requirement 2 . . . . . . .. .. 52
3.2.24 SP800-90B Section 3.2.3 Requirement 3 . . . . . . .. .. 52
3.2.25 SP800-90B Section 3.2.3 Requirement 4 . . . . .. .. .. 52
3.2.26 SP800-90B Section 3.2.3 Requirement 5 . . . . . . . . .. 53
3.2.27 SP800-90B Section 3.2.4 Requirement 1 . . . . . . . . .. 53
3.2.28 SP800-90B Section 3.2.4 Requirement 2 . . . . . . .. .. 53
3.2.29 SP800-90B Section 3.2.4 Requirement 3 . . . . .. .. .. 53
3.2.30 SP800-90B Section 3.2.4 Requirement 4 . . . . .. .. .. 53
3.2.31 SP800-90B Section 3.2.4 Requirement 5 . . . . .. .. .. 53
3.2.32 SP800-90B Section 3.2.4 Requirement 6 . . . . . . .. .. 53
3.2.33 SP800-90B Section 3.2.4 Requirement 7 . . . . . . .. .. 53
3.2.34 SP800-90B Section 4.3 Requirement 1 . . . . . . . . ... 53
3.2.35 SP800-90B Section 4.3 Requirement 2 . . . . . .. .. .. 53
3.2.36 SP800-90B Section 4.3 Requirement 3 . . . . . ... ... 54
3.2.37 SP800-90B Section 4.3 Requirement 4 . . . . . . . .. .. 54
3.2.38 SP800-90B Section 4.3 Requirement 5 . . . . . .. .. .. 54
3.2.39 SP800-90B Section 4.3 Requirement 6 . . . . . .. .. .. 54
3.2.40 SP800-90B Section 4.3 Requirement 7 . . . . . .. .. .. 54
3.2.41 SP800-90B Section 4.3 Requirement 8 . . . . . .. .. .. 54
3.2.42 SP800-90B Section 4.3 Requirement 9 . . . . . .. .. .. 55
3.2.43 SP800-90B Section 4.4 . . . . . . . ... ... ... ... 55
3.3 NIST Clarification Requests . . . . . . . . ... ... ... .... 56
3.3.1 Sensitivity of Interrupt Timing Measurements . . . . . . . 56
3.3.2 Dependency Between Interrupt Timing Measurements . . 56
3.4 SP800-90B Compliant Configuration . . . . ... ... ... ... 56
3.5 Reuse of SP800-90B Analysis . . . ... .. ... ... ...... 58
3.6 SP800-90C . . . . . . . . . 58
37 AIS20 /31 . . o 59
3.7.1 NTG.1 Compliant Configuration . . . ... .. ... ... 60
LRNG Comparison to legacy /dev/random 60
4.1 Time Until Fully Initialized . . . . . ... ... ... ... ... 60
4.2 Interrupt Handler Performance . . . . ... ... ... ...... 61
4.3 LRNG Output Performance And DRNG Type . . ... ... .. 63
4.4 ChaCha20 Random Number Generator . . . . . . . .. ... ... 65
4.5 Legacy /dev/random Non-Compliance with SP800-90B . . . . . 66
Thanks 68
Source Code Availability 68
SP800-90B Entropy Measurements 68
Auxiliary Testing 69
Bibliographic Reference 70



F License 71

G Change Log 71

List of Figures

2.1 LRNG Big Picture . . . . ... ... ... 14
4.1 Average Cycle Count To Process One Interrupt Depending on
Collection Size . . . . . . . . . . . e 62

List of Tables

1 Average Cycle Count To Process One Interrupt Depending on

Enabled Functionality . . . . ... ... ... ... .. ...... 62
2 LRNG performance on 64-bit . . . . .. .. ... ... ... ... 64
3 LRNG performance on 32 bit . . . . .. ... ... ... ... .. 65
5 LRNG Entropy Testing Results on Different Hardware . . . . . . 69

1 Introduction

The Linux /dev/random device has a long history which dates all the way back
to 1994 considering the copyright indicator in its Linux kernel source code file
drivers/char/random.c. Since then it provides random data to cryptographic
and non-cryptographic use cases. The Linux /dev/random implementation was
analyzed and tested by numerous researchers, including the author of this paper
with the BSI study on /dev/random including a quantiative assessment of its
internals [8], the behavior of the legacy /dev/random in virtual environments
[7] and presentations on /dev/random such as [6] given at the ICMC 2015. All
the studies show that the random data out of /dev/random are highly entropic
and offer a good quality.

So, why do we need to consider a replacement for this venerable Linux
/dev/random implementation?

1.1 Linux /dev/random Status Quo

In recent years, the computing environments that use Linux have changed signif-
icantly compared to the times at the origin of the Linux /dev/random. By using
the timing of block device events, timing of human interface device (HID) events
as well as timing of interrupt events!, the Linux /dev/random implementation
derives its entropy.

The block device noise source provides entropy by concatenating:

e the block device identifier which is static for the lifetime of the system and
thus provides little? or no entropy,

I The additional sources of entropy from user space via an IOCTL on /dev/random as well
as specialized hardware implementing a random number generator should be left out of scope
as they are entropy sources that are not modeled by the Linux /dev/random. Further, as
these sources of entropy are rarely available, /dev/random cannot rely on their presence.

2If two or more disks are present in the system that are deemed to provide entropy, the
order of event arrivals for the different disks may provide some small entropy.



o the event time of a block device I/O operation in Jiffies which is a coarse
timer and provides very limited amount of entropy, and

o the event time of a block device I/O operation using a high-resolution

timer which provides almost all measured entropy for this noise source3.

The HID noise source collects entropy by concatenating:

o the HID identifier such as a key or the movement directions of a mouse
which provide a hard to quantify amount of entropy,

e the event time of an HID operation in Jiffies which again provides a very
limited amount of entropy, and

o the event time of an HID operation using a high-resolution timer that
again provides almost all measured entropy for this noise source.

The interrupt noise source obtains entropy by:

e mixing the high-resolution time stamp, the Jiffies time stamp, the value of
the instruction pointer and the register content into a per-CPU fast_pool
where the high-resolution time stamp again provides the majority of en-
tropy — due to a high correlation between the interrupt occurrence and the
HID / block device noise sources the time stamp for those events are con-
sidered to have relatively little entropy which implies that the content of
the fast_pool at the time of injection into the input_pool is heuristically
assumed to have one bit of entropy, and

e injecting the content of the fast_pool into the input_pool entropy pool
once a second or after 64 interrupts have been processed by that per-CPU
fast_pool — whatever comes later.

Due to the correlation effect between the HID and block device events on one
side and the associated interrupts on the other hand, the legacy /dev/random
implementation always credits interrupts very little entropy to prevent any po-
tential overestimation of entropy.

What are the challenges for those aforementioned three noise sources?*

At the time when block devices were chosen as a noise source for the legacy
/dev /random, computer were commonly equipped with spinning hard disks. For
those disk devices, the entropy for block devices is believed to be derived from
the physical phenomenon of turbulence while the spinning disk operates and
the resulting uncertainty of the exact access time. In addition, when accessing
a sector on the disk, the read head must be re-positioned and the hard disk
must wait until the sector to be accessed is below the read head. The attacker’s
inability to predict or resolve the exact access time is the root cause of entropy.
Let us assume that these assumptions are all correct. The issue in modern com-
puting environments is that fewer hard disks with spinning platters are used.

3Such entropy naturally relies on the assumption that the time variances of events are hard
to predict with sufficient precision relative to the resolution of the timer. In addition, any
attacker is assumed to not have access to the kernel memory holding the entropy as otherwise
it is eliminated.

4Note, the legacy /dev/random implementation also uses information from device drivers
via add_device_randomness. That function can be considered as a noise source itself. As this
data is credited with zero bits of entropy, it is not subject to discussion here.



Solid State Disks (SSD) are more and more in use where all of these assumptions
are simply not applicable as these disks are not subject to turbulence, read head
positioning or waiting for the spin angle when accessing a sector. Furthermore,
hard disks with spinning platters more commonly have large caches where ac-
cessed sectors served out of that cache are again not subject to the root causes
of entropy. In addition, the more and more ubiquitous use of Linux as guest
operating system in virtual environments again do not allow assuming that the
mentioned physical phenomena are present. Virtual Machine Monitors (VMM)
may use large buffer caches®. Also, a VMM may convert a block device I/O ac-
cess into a resource access that has no relationship with hard disks and spinning
platters, such as a network request. The same applies to Device Mapper setups.
When a current Linux kernel detects that it has no hard disks with spinning
platters — which includes SSDs or VMM-provided disks — or Device Mapper
targets are in use, the Linux kernel simply deactivates these block devices for
entropy collection®. Thus, for example, on a system with an SSD, no entropy is
collected when accessing that disk.

The timing of HID events using a high-resolution timer is commonly a great
source of entropy as it delivers much entropy for any random number generator
due to the fact that large numbers of events occur. In addition, assuming the
precise timing of an event must be assumed to be unknown to any attacker. Each
movement of the mouse by one tick triggers the entropy collection. Also, each
key press and release individually generates an event that is used for entropy.
However, a large number of systems run headless, such as almost all servers
either on bare metal or within a virtual machine. Thus, entropy from HIDs is
simply not present on those systems. Now, having a headless server with an
SSD, for example, implies that two of the three noise sources are unavailable.
Such systems are left with the interrupt noise source whose entropy contribution
is rated very low by the legacy /dev/random entropy estimator compared to the
two unavailable noise sources.

With the findings above the following conclusion can be drawn: a HID or
block device event providing entropy to the respective individual noise sources
processing generates an interrupt. These interrupts are also processed by the
interrupt noise source. As mentioned above, the majority of entropy is delivered
by the high-resolution time stamp of the occurrence of such an event. Now, that
event is processed twice: once by the HID or block device noise source and once
by the interrupt noise source. Thus, initially the two time stamps of the one
event (HID noise source and interrupt noise source, or block device noise source
and interrupt noise source) used as a basis for entropy are highly correlated.
Correlation or even a possible reuse of the same random value diminishes entropy
significantly. The use of a per-CPU fast_pool with an LFSR and the injection
of the fast_pool into the core entropy pool of the input_pool after the receipt
of 64 interrupts can be assumed to change the distribution of the input value
such that the correlation would be difficult to exploit in practice. Furthermore,
the assumption that at the time of injecting of a fast_pool into the input_pool
the contents of that fast_pool has only one bit of entropy counters correlation

5In case of KVM, the host Linux kernel uses its buffer cache which can occupy the entire
non-allocated RAM of the hardware.

6An interested reader may trace the Linux kernel source code where the flag
QUEUE_FLAG_ADD_RANDOM is cleared. One of the key locations is the function
sd_read_block_characteristics that disables SSDs as entropy source.



effects. As of now, however, the author is unaware of any quantitative study
analyzing whether the correlation is really broken and the fast_pool can be
assumed to have one bit of entropy. Conversely, the entire assessment in this
document, specifically chapter 3 and following show that interrupt events on
a system with high-resolution time stamps provide large amounts of entropy.
However, due to the correlation issue, the legacy /dev/random implementation’s
entropy heuristics cannot be changed to award interrupt events a higher entropy
rate.

The discussion shows that the noise sources of block devices and HIDs are
a derivative of the interrupt noise source. All events used as entropy source
recorded by the block device and HID noise source are delivered to the Linux
kernel via interrupts.

1.2 A New Approach

Given that for all three noise sources challenges are identified in modern com-
puting environments, a new approach for collecting and processing entropy is
proposed.

To not confuse the reader, the following terminology is used:

e The Linux /dev/random implementation in drivers/char/random.c is
called legacy /dev/random henceforth. Although the naming refers only to
the interface, the entirety of the legacy random number generation in the
Linux kernel available through different interfaces like /dev/random, /de-
v/urandom, getrandom(2) or the in-kernel function of get_ random_ bytes
is covered by the name.

e The newly proposed approach for entropy collection is called Linux Ran-
dom Number Generator (LRNG) throughout this document. It provides
an API and ABI compatible replacement implementation of the legacy
/dev/random implementation providing the same interfaces and identi-
cal user-visible behavior but with a completely different collection and
management of entropy as well as generation of random numbers.

The new approach provides the following significant differences compared to the
legacy /dev/random implementation:

1. The LRNG considers the timing of interrupts as the source of entropy.
Therefore, the entropy heuristic applied by the LRNG only rests on the
timing of interrupts. Other event information like the HID event data (e.g.
which key stroke was received, which mouse coordinate was recorded) or
block device numbers are picked up and stirred into the entropy pool but
without awarding them any heuristic entropy. Thus, the LRNG is not
affected by the aforementioned correlation issue.

2. The LRNG introduces the concept of slow and fast noise sources. Fast
noise sources provide entropy at the time of request. A slow noise source
collects data over time into an entropy pool — the interrupt events are
considered such a slow noise source. The LRNG combines both types of
noise sources that when the entropy pool is queried for entropy, all fast
noise sources are also queried for additional entropy and the concatenated
data is handled by the post-processing to generate random numbers. With



this, the LRNG can use both types of noise sources without allowing one
noise source to dominate another.

3. The seeding mechanism of the LRNG during boot ensures that entropy
data is forwarded to the deterministic random number generators in well-
defined chunks of 32 bits, 128 bits and 256 bits where these chunks de-
nominate the of initial, minimal and full seed levels of the LRNG. Thus,
the LRNG cannot be tricked into repeatedly releasing small entropy levels
to the deterministic random number generators and thus to callers. Such
attack approach would diminish the collected entropy significantly. Com-
monly, the minimal entropy threshold of 128 bits of the LRNG is reached
before or at the time user space boots. The full seed level of 256 bits is
reached at the time the initramfs is executed but before the root partition
is mounted on standard Linux distributions.

4. The LRNG supports a runtime-switchable deterministic random number
generator that generates data for a calling user that can be enabled during
compile time. With a well defined API developers can implement their own
deterministic random number generator if the provided ones are not con-
sidered appropriate. Per default, a ChaCha20-based deterministic random
number generator is used. In addition, an SP800-90A [1] DRBG offering
all three DRBG types is provided as well. The SP800-90A DRBG and
its cryptographic primitives are taken from the kernel crypto API which
implies that these implementations are covered by the power-on health
tests offered by the kernel crypto API.

5. The LRNG provides a health test interface that monitor the received en-
tropy for the slow noise source can can be enabled during compile time.
Using this test interface, SP800-90B [11] or AIS31 [5] compliant health
tests are implemented. With these health tests and additional logic, the
LRNG is considered SP800-90B compliant. When using an SP800-90A
DRBG at the same time the LRNG operates compliant to SP800-90B,
the output of an LRNG can be used directly for purposes requiring data
from a FIPS 140-2 approved noise source and random number generator.

6. To analyze the slow noise source, the LRNG provides a development in-
terface allowing to extract the raw unconditioned noise data’.

7. Tests are developed for various aspects of the LRNG allowing a user-space
simulation of those LRNG functions. Such simulations allow developers
to further analyze and assess the implementation and the resulting behav-
ior of the LRNG. In addition, tests for all types of entropy assessments
required by SP800-90B are provided. Finally, this document provides a
full SP800-90B entropy analysis.

The idea for the LRNG design occurred during a study that was conducted for
the German BSI analyzing the behavior of entropy and the operation of entropy
collection in virtual environments. As mentioned above, modeling noise sources
for block devices and HIDs is not helpful for virtual environments. However,
any kind of interaction with virtualized or real hardware requires a VMM to

7This interface is solely intended for development. It is intended to be disabled at compile
time for production systems.



still issue interrupts. These interrupts are issued at the time the event is relayed
to the guest. As on bare metal, interrupts are issued based on either a trigger
point generated by the virtual machine or by external entities wanting to interact
with the guest. Irrespective whether the VMM translates a particular device
type into another device type (e.g. a block device into a network request),
the timing of the interrupts triggered by these requests is hardly affected by
the VMM operation. Thus entropy collection based on the time stamping of
interrupts is hardly affected by a VMM.

Before discussing the design of the LRNG, the goals of the LRNG design are
enumerated:

1. During boot time, the LRNG is designed to already provide random num-
bers with sufficiently high entropy. It is common that long-running dae-
mons with cryptographic support seed their deterministic random number
generators (DRNG) when they start during boot time. The re-seeding of
those DRNGs may be conducted very much later, if at all which implies
that until such re-seeding happens, the DRNG may provide weak random
numbers. The LRNG is intended to ensure that for such use cases, suf-
ficient entropy is available during early user space boot. Daemons that
link with OpenSSL, for example, use a DRNG that is not automatically
re-seeded by OpenSSL. If the author of such daemons is not careful, the
OpenSSL DRNG is seeded once during boot time of the system and never
thereafter. Hence seeding such DRNGs with random numbers having high
entropy is very important.

As documented in chapter 4 the DRNG is seeded with full security strength
of 256 bits during the first steps of the initramfs time after about 1.3 sec-
onds after boot. That measurement was taken within a virtual machine
with very few devices attached where the legacy /dev/random implemen-
tation initializes the nonblocking_pool or the ChaCha20 DRNG after 30
seconds or more after boot with 128 bits of entropy. In addition, the LRNG
maintains the information by when the DRNG is “minimally” seeded with
128 bits of entropy to trigger in-kernel callers requesting random numbers
with sufficient quality. This is commonly achieved even before user space
is initiated.

2. The LRNG must be a drop-in replacement for the legacy /dev/random in
respect to the ABI and API of its external interfaces. This allows keeping
any frictions during replacement to a minimum. The interfaces to be
kept ABI and API compatible cover all in-kernel interfaces as well as the
user space interfaces. No user space or kernel space user of the LRNG is
required to be changed at all.

3. All user-visible behavior implemented by the legacy /dev/random — such
as the per-NUMA-node DRNG instances are provided by the LRNG as
well.

4. The LRNG must be very lightweight in hot code paths. As described in
the design in chapter 2, the LRNG is hooked into the interrupt handler
and therefore should finish the code path in interrupt context very fast.

5. The LRNG must not use locking in hot code paths to limit the impact on
massively parallel systems.



10.

1.3

The LRNG must handle modern computing environments without a degra-
dation of entropy. The LRNG therefore must work in virtualized environ-
ments, with SSDs, on systems without HIDs or block devices and so forth.

The LRNG must provide a design that allows quantitative testing of the
entropy behavior.

The LRNG must use testable and widely accepted cryptography for whiten-
ing.

The LRNG must allow the use of cipher implementations backed by archi-
tecture specific optimized assembler code or even hardware accelerators.
This provides the potential for lowering the CPU costs when generating
random numbers — less power is required for the operation and battery
time is conserved.

The LRNG must separate the cryptographic processing from the noise
source maintenance to allow a replacement of these components.

Advantages Introduced by LRNG

The LRNG provides the same APIs, uses the same ABI and it implements at
least all features of the legacy /dev/random such as NUMA-node-local DRNGs.
The following advantages compared to the legacy /dev/random implementation
are present:

e Sole use of crypto for data processing:

— Exclusive use of a hash operation for conditioning entropy data with a
clear mathematical description as given section 2.2 — non-cryptographic
operations like LFSR are not used.

— The LRNG uses only properly defined and implemented cryptographic
algorithms unlike the use of the SHA-1 transformation in the legacy
/dev/random implementation that is not compliant with SHA-1 as
defined in FIPS 180-4.

— Hash operations use NUMA-node-local hash instances to benefit large
parallel systems.

— LRNG uses limited number of data post-processing steps as doc-
umented in section 2.2 compared to the large variation of differ-
ent post-processing steps in the legacy /dev/random implementation
that have no apparent mathematical description (see section 4.5).

¢ Performance

— Faster by up to 130% in the critical code path of the interrupt han-
dler depending on data collection size configurable at kernel compile
time as outlined in section 4.2 - the default selects the collection size
providing the fastest performance.

— Configurable data collection sizes to accommodate small environ-
ments and big environments via CONFIG_LRNG_COLLECTION_SIZE.

10



Entropy collection using an almost never contended lock to benefit
large parallel systems — worst case rate of contention is the number
of DRNG reseeds, usually the number of potential contentions per
10 minutes is equal to number of NUMA nodes.

ChaCha20 DRNG is significantly faster as implemented in the legacy
/dev/random as demonstrated with table 2.

Faster entropy collection during boot time to reach fully seeded level,
including on virtual systems or systems with SSDs as outlined in
section 4.1.

o Testing

Availablility of run-time health tests of the raw unconditioned noise
source to identify degradation of the available entropy as documented
in section 2.5.4. Such health tests are important today due to virtual
machine monitors reducing the resolution of or disabling the high-
resolution timer.

Heuristic entropy estimation is based on quantitative measurements
and analysis following SP800-90B and not on coincidental underesti-
mation of entropy applied by the legacy /dev/random as outlined in
[8] section 4.4.

Power-on self tests for critical deterministic components (ChaCha20
DRNG, software hash implementation, and entropy collection logic)
not already covered by power-up tests of the kernel crypto API as
documented in section 2.14.

Availability of test interfaces for all operational stages of the LRNG
including boot-time raw entropy event data sampling as outlined in
section 2.15.

Fully testable ChaCha20 DRNG via a userspace ChaCha20 DRNG
implementation.

In case of using the SP800-90A DRBG, it is fully testable and tested
via the NIST ACVP test framework, for example certificates A628,
and A737.

In case of using the kernel crypto API SHASH hash implementation,
it is fully testable and tested via the NIST ACVP test framework,
for example certificates A734, A737, and A738.

The LRNG offers a test interface to validate the used software hash
implementation and in particular that the LRNG invokes the hash
correctly, allowing a NIST ACVP-compliant test cycle — see sec-
tion 2.15.

Availability of stress testing covering the different code paths for data
and mechanism (de)allocations and code paths covered with locks.

e Entropy collection

The LRNG is fully compliant to SP800-90B requirements and is
shipped with a full SP800-90B assessment and all required test tools.

11


https://www.chronox.de/chacha20_drng.html
https://www.chronox.de/chacha20_drng.html
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=12941
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=13146
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=13169
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=13146
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=13147
https://github.com/smuellerDD/lrng/blob/master/test/swap_stress.sh
https://www.chronox.de/lrng.html

The legacy /dev/random implementation on the other hand has ar-
chitectural limitations which does not easily allow to bring the imple-
mentation in compliance with SP800-90B as outlined in section 4.5.

— Full entropy assessment and description is provided with chapter 3,
specifically section 3.2.6.

— Guarantee that entropy events are not credited with entropy twice
(the legacy /dev/random implementation credits HID/disk and in-
terrupt events with entropy which are a derivative of each other) and
guarantee that entropy data is not reused for two different use cases
(as done in the legacy /dev/random implementation when injecting
a part of fast_ pool into the net_rand_ state).

« Configurable

— LRNG kernel configuration allows configuration that is functionally
equivalent to the legacy /dev/random. Non-compiled additional code
is folded into no-ops.

— The following additional functions are compile-time selectable inde-
pendent of each other:

> Enabling of switchable cryptographic implementation support.
This allows enabling SP800-90A DRBG.

> Enabling of using Jitter RNG noise source.

> Enabling of noise source health tests including SP800-90B health
tests.

> Enabling of test interface allowing to enable each test interface
individually.

> Enabling of the power-up self test.

— At boot-time, the SP800-90B health tests can be enabled as outlined
in section 2.5.4.

— At boot-time, the entropy rate used to credit the external CPU-based
noise source and Jitter RNG noise source can be configured including

setting an entropy rate of zero or full entropy — see sections 2.5.2 and
2.5.3.

e Run-time pluggable cryptographic implementations used for all data pro-
cessing steps specified in section 2.2

— The DRNG can be replaced with a different implementation allowing
any type of DRNG to provide data via the output interfaces. The
LRNG provides the following types of DRNG implementations:

> ChaCha20-based software implementation that is used per de-
fault.

> SP800-90A DRBG using accelerated cryptographic implementa-
tions that may sleep.

> Any DRNG that is accessible via the kernel crypto API RNG
subsystem.

— The hash component can be replaced with any other hash imple-
mentation provided the implementation does not sleep. The LRNG
provides the following types of hash implementations:

12



> SHA-256 software implementation that is used per default. Due
to kernel build system inconsistencies, the software SHA-1 im-
plementation is used if the kernel crypto API is not compiled.

> SHA-512 hash using the fastest hash implementation available
via the kernel crypto API SHASH subsystem.

¢ Code structure

— The LRNG source code is available for current upstream Linux ker-
nel separate to the legacy /dev/random which means that users who
are conservative can use the unchanged legacy /dev/random imple-
mentation.

— Back-port patches are available to apply the LRNG to Linux kernel
versions of 5.8, 5.4, 4.19, 4.14, 4.12, and 4.10. Patches for other
kernel versions are easily derived from the existing ones.

1.4 Document Structure

This paper covers the following topics in the subsequent chapters:

e The design of the LRNG is documented in chapter 2. The design discus-
sion references to the actual implementation whose source code is publicly
available.

o The statistical testing including the SP800-90B compliance assessment is
provided in chapter 3.

e The comparison of the LRNG with the legacy /dev/random is covered in
chapter 4.

e The various appendices cover miscellaneous topics supporting the general
description.

2 LRNG Design

The LRNG can be characterized with figure 2.1 which provides a big picture of
the LRNG processing and components.

13


https://github.com/smuellerDD/lrng/tree/master/backports

( /dev/random ) ( /dev/urandom ) (get,random,byteS)

User Space
getrandom getrandom Writes
( (GRND_RANDOM) ((GRND,NONBLOCK) IOCTL
[
‘ Generate
DRNG PU Jitter
Noise
(Re)Seeding
PU RNG
Noise
Temorary - - -
Seed Buffer|__Hash of Pools \ _ CPU Noise \ CPU Jitter \Tlmel
‘\\ per-CPU \\“—x‘
»_Entropy Pool Aux Pool BN
\ ! ]
‘ \Hash I \ Hash '|=
Entropy Estimf—>{[[[1[[1[ .. [[IIT[] (I .. T
Time Stamp Array Event Value

. Other
IRQ Noise Event Data

Figure 2.1: LRNG Big Picture

The colors indicate the different entropy sources managed by the LRNG.

2.1 LRNG Components
The LRNG consists of the following components shown in figure 2.1:

1. The LRNG implements a DRNG. The DRNG always generates the re-

quested amount of output. When using the SP800-90A terminology it
operates without prediction resistance. The DRNG maintains a counter
of how many bytes were generated since last re-seed and a timer of the
elapsed time since last re-seed. If either the counter or the timer reaches
a threshold, the DRNG is seeded from the entropy pool and additional
“fast” noise sources.

In case the Linux kernel detects a NUMA system, one DRNG instance per
NUMA node is maintained.

Depending on the used interface to request data from the DRNG, the
caller may be put to sleep until the LRNG is fully seeded:

(a) /dev/urandom and the getrandom system call with the GRND_INSECURE
flag always generates data including when the LRNG is not properly
seeded.

(b) /dev/random and the getrandom system call with the GRND_RANDOM
or with a flag of zero generates data only when the LRNG is fully
seeded.

2. The DRNG is seeded by concatenating the data from the following sources:

(a) the output of the entropy pools,

14



(b) the Jitter RNG if available, and
(¢) the CPU-based noise source such as Intel RDSEED if available.

The entropy estimate of the data of all noise sources are added to form the
entropy estimate of the data used to seed the DRNG with. The LRNG
ensures, however, that the DRNG after seeding is at maximum the security
strength of the used DRNG implementation of 256 bits.

The LRNG is designed such that none of these noise sources can dominate
the other noise sources to provide seed data to the DRNG due to the
following:

(a) During boot time, the amount of received interrupts are the trigger
points to (re)seed the DRNG following the explanation in the next
section.

(b) At runtime, the available entropy from the slow noise source is con-
catenated with a pre-defined amount of data from the fast noise
sources. In addition, each DRNG reseed operation triggers exter-
nal noise source providers to deliver one block of data.

. The entropy pool collects noise data from slow noise sources. Any data
received by the LRNG from the slow noise sources is inserted into the per-
CPU entropy pool using an a hash. After boot, the used hash is SHA-256,
but the used hash algorithm can be changed at runtime. The following
sources of entropy are used:

(a) When an interrupt occurs, the high-resolution time stamp is con-
catenated with previous time stamps. Once a given number of time
stamps are received, they are hashed together with the per-CPU en-
tropy pool to form a new state of that entropy pool. This time stamp
is credited with heuristically implied entropy. To speed up the in-
terrupt handling code of the LRNG, the time stamp collected for
an interrupt event is truncated to the 8 least significant bits. 1,024
truncated time stamps are concatenated and then processed by the
mentioned hash operation. During boot time, until the fully seeded
stage is reached, each time stamp truncated to the 32 least signifi-
cant bits instead. These 32 bits are concatenated like the 8 bit values
and processed by the hash operation. More details are given in sec-
tion 2.5.1.

(b) HID event data like the key stroke or the mouse coordinates are
concatenated with the time stamps and processed as outlined for the
time stamps. This data is not credited with entropy by the LRNG
and this data has no correlation with the data credited with entropy,
i.e. the time stamp. Thus it is treated as additional data to stir the
entropy pool.

(¢) Device drivers may provide data that is mixed into the auxiliary pool
using the hash operation. This data is not credited with entropy by
the LRNG and it is unrelated to the data credited with entropy, i.e.
the time stamp. Thus it is treated as additional data to stir the
entropy pool.

15



When the DRNG requires fresh seed data from the entropy pools, a hash of
all per-CPU entropy pools and the auxiliary pool is created. The resulting
message digest is used as seed data but at the same time is the new state
of the auxiliary pool. The data returned as seed data is truncated to the
amount of bits requested by the caller (commonly 256 bits which is equal to
the security strength of the DRNG) or truncated to the available entropy,
whatever is smaller. The result of this operation is that the generated
data used to seed the DRNG have full entropy. The truncation operation
maintains entropy as it is defined by [11] section 5.1.3.1.1 table 1 which
defines that each approved hash has full security strength even though the
hash operation performs a truncation (e.g. for SHA-384 or SHA-512/256).

4. Any data provided from user space either provided via /dev/random, /de-
v/urandom or the IOCTL of RNDADDENTROPY on both device files are al-
ways injected into the auxiliary pool.

In addition, when a hardware random number generator covered by the
Linux kernel HW generator framework wants to deliver random numbers,
it is injected into the auxiliary pool as well. HW generator noise source
is handled separately from the other noise source due to the fact that
the HW generator framework may decide by itself when to deliver data
whereas the other noise sources always requested for data driven by the
LRNG operation. Similarly any user space provided data is inserted into
the entropy pool.

The reason for having the auxiliary pool is to allow injection of entropy
data compliant to [11] section 3.1.6. As the LRNG may maintain multiple
DRNGs, it would not be clear into which DRNG to inject it at the time
of receipt of data from these auxiliary noise sources.

When the entropy pool is processed with the hash function to obtain
random numbers, the auxiliary pool is “read” at the same time. Thus, the
hash operation generates random numbers using both pools at the same
time. To support backtracking resistance, the generated hash is given
to the caller but also injected into the auxiliary pool like other data by
hashing it together with the existing auxiliary pool data to form the new
auxiliary pool content.

The LRNG allows the DRNG mechanism and the used hash to be changed
at runtime. Per default, a ChaCha20-based DRNG is used® together with a
software implementation of SHA-256. The LRNG also offers an SP800-90A
DRBG based on the Linux kernel crypto API DRBG implementation along with
the most accelerated SHA-512 hash implementation from the kernel crypto APIL.

The following subsections cover the different components of the LRNG from
the bottom to the top.

2.2 LRNG Data Processing

The processing of entropic data from the noise source before injecting them
into the DRNG is performed with the following mathematical operations. The

8The ChaCha20-DRNG implemented for the LRNG is also provided as a stand-alone user
space deterministic random number generator.

16


https://www.chronox.de/chacha20_drng.html
https://www.chronox.de/chacha20_drng.html

operation SHA() refers to the hash operation using the message digest imple-
mentation that is currently present, i.e. either SHA-256 or SHA-512 (in case
the kernel crypto API is not compiled, SHA-1 is used).

1. Truncation: The received time stamps are truncated to 8 least significant
bits (or 32 least significant bits during boot time): tg (or t32)

2. Concatenation: The received and truncated time stamps as well as aux-
iliary 32 bit words aso are concatenated to fill the per-CPU data array
that is capable of holding 1,024 8-bit words” - the order of the data a3y
or tg present in the concatenation depends on the occurrence of events -
the following formula depicts one possible order for illustration - the im-
plementation is provided with functions _lrng_pcpu_array_add_u32 and
lrng_pcpu_array_add_slot:

DA = zf87#1019 ||a32n

t8n71018|| ||t8n (2'1)

Note: In case the continuous compression operation is disabled, the aux-
iliary 32 bit words ags are discarded and are not injected into the data
array. This approach is taken to prevent non-entropy data to potentially
overwrite entropy data in the data array when the array wraps.

3. Hashing: All concatenated time stamp data received from the interrupts
since the last output generation of the per-CPU entropy pool EPcpy,_,
are hashed together with that last output EPcpy, , to generate new per-
CPU entropy pool output of EPcprs,. The following steps are performed:

(a) One filled per-CPU data array DA,, is inserted into the per-CPU
entropy pool using a hash update operation.

(b) To generate data from the entropy pool EPcpy, as used by func-
tion 2.4, a hash final operation is performed.

(c) Once a hash final operation is performed it is followed by an immedi-
ate re-initialization of the hash state with a hash init operation and
adding the just calculated message digest with the first hash update.

The implementation is provided with function 1rng_pcpu_array_compress
together with the function lrng_pcpu_pool_hash_one generating data
from the per-CPU entropy pool:

EPcpy, = SHA(DAw||DAp-1]..)|DAm—n1||EPcpu, ,)  (2.2)

Note: When continuous compression support is enabled (the default), the
hashing is performed every time the data array is full. When continuous
compression support is disabled, the hashing is performed at the time when
the operation of equation 2.4 is invoked (i.e. at the time the DRNG is
reseeded). This implies that in case of disabled continuous compression,
the oldest entries in the data array are overwritten with newer entropy
event data.

9The LRNG collection size is compile-time configurable where 1,024 is a default value.
When configuring a different value, the number of the concatenated data must be adjusted as
needed. However, this modification has no impact to the illustration of the data processing.

17



4. Hashing: When new data D is added to the auxiliary pool AP, the data is
hashed together with the auxiliary pool to form a new auxiliary pool state
- the implementation is provided with function 1rng_pool_insert_aux:

AP, = SHA(AP,_,||D) (2.3)

5. Hashing: A message digest of all per-CPU entropy pools and the auxiliary
pool is calculated which forms the new auxiliary pool state. At the same
time, this message digest is used to fill the slow noise source output buffer
S discussed in the following - the implementation is provided with function
lrng_pcpu_pool_hash:

AP, = SHA(AP,_1||[EPcpuo, ||EPcpui, || ... |EPcpux,)  (2.4)

6. Truncation: The most-significant bits (MSB) defined by the requested
number of bits (commonly equal to the security strength of the DRBG) or
the entropy available transported with the buffer (which is the minimum of
the message digest size and the available entropy in all entropy pools and
the auxiliary pool), whatever is smaller, are obtained from the slow noise
source output buffer S - the implementation is provided with function
lrng_pcpu_pool_hash:

Sn = MSBmin(entropy,security strength) (APn) (25)

7. Concatenation: The temporary seed buffer T' used to seed the DRNG is a
concatenation of the slow noise source buffer S, the Jitter RNG output J,
the CPU noise source output C, and the current time ¢ - the implemen-
tation is provided with function lrng fill_seed_buffer:

T = SullJul|Cullt (2.6)

2.3 LRNG Architecture

Before going into the details of the LRNG processing, the concept underlying
the LRNG shown in figure 2.1 is provided here.

The entropy derived from the slow noise sources is collected and accumulated
in the entropy pools.

At the time the DRNG shall be seeded, the all entropy pools and the auxil-
iary pool are processed with a cryptographic hash function which can be chosen
at runtime. If the digest of the hash and the available entropy are larger than
requested by the caller, the digest is truncated to the appropriate size.

The output of the hash function is the new auxiliary pool state to ensure
backtracking resistance. The message digest is concatenated with data from the
fast noise sources.

The DRNG always tries to seed itself with 256 bits of entropy, except during
boot. In any case, if the noise sources cannot deliver that amount, the available
entropy is used and the DRNG keeps track on how much entropy it was seeded
with. The entropy implied by the LRNG available in the entropy pool may be
too conservative. To ensure that during boot time all available entropy from the
entropy pool is transferred to the DRNG, the hash function always generates
256 data bits during boot to seed the DRNG. During boot, the DRNG is seeded
as follows:

18



1. The DRNG is reseeded from the entropy pool and potentially the fast
noise sources if the entropy pool has collected at least 32 bits of entropy
from the interrupt noise source. The goal of this step is to ensure that
the DRNG receive some initial entropy as early as possible. In addition it
receives the entropy available from the fast noise sources.

2. The DRNG is reseeded from the entropy pool and potentially the fast
noise sources if all noise sources collectively can provide at least 128 bits
of entropy.

3. The DRNG is reseeded from the entropy pool and potentially the fast
noise sources if all noise sources collectivel can provide at least 256 bits of
entropy.

At the time of the reseeding steps, the DRNG requests as much entropy as is
available in order to skip certain steps and reach the seeding level of 256 bits.
This may imply that one or more of the aforementioned steps are skipped.

In all listed steps, the DRNG is (re)seeded with a number of random bytes
from the entropy pool that is at most the amount of entropy present in the
entropy pool. This means that when the entropy pool contains 128 or more bits
of entropy, the DRNG is seeded with that amount of entropy as well.

Before the DRNG is seeded with 256 bits of entropy in step 3, requests of
random data from /dev/random or the getrandom system call are not processed.

The hash operation providing random data from the entropy pool will always
require that all entropy sources collectively can deliver at least 128 entropy bits.

The DRNG operates as deterministic random number generator with the
following properties:

e The maximum number of random bytes that can be generated with one
DRNG generate operation is limited to 4096 bytes. When longer ran-
dom numbers are requested, multiple DRNG generate operations are per-
formed. The ChaCha20 DRNG as well as the SP800-90A DRBGs im-
plement an update of their state after completing a generate request for
backtracking resistance.

e The DRNG is reseeded with whatever entropy is available, but at least 128
bits — in the worst case where no additional entropy can be provided by
the noise sources, the DRNG is not re-seeded and continues its operation
to try to reseed again after again the expiry of one of these thresholds:

— If the last reseeding of the DRNG is more than 600 seconds ago'?, or

— 220 DRNG generate operations are performed, whatever comes first,
or

— the DRNG is forced to reseed before the next generation of random
numbers if data has been injected into the LRNG by writing data
into /dev/random or /dev/urandom.

10Note, this value will not empty the entropy pool even on a completely quiet system.
Testing of the LRNG was performed on a KVM without fast noise sources and with a minimal
user space, where only the SSH daemon was running, During the testing, no operation was
performed by a user. Yet, the system collected more than 256 bits of entropy from the
interrupt noise source within that time frame, satisfying the DRNG reseed requirement.

19



The chosen values prevent high-volume requests from user space to cause
frequent reseeding operations which drag down the performance of the
DRNG!12,

With the automatic reseeding after 600 seconds, the LRNG is triggered to reseed
itself before the first request after a suspend that put the hardware to sleep for
longer than 600 seconds.

2.3.1 Minimally Versus Fully Seeded Level

The LRNG’s DRNG is reseeded when the first 128 bits / 256 bits of entropy are
received during boot as indicated above. The 128 bits level defines that that
the DRNG is considered “minimally” seeded whereas reaching the 256 bits level
is defined as the DRNG is “fully” seeded.

Both seed levels have the following implications:

o Upon reaching the minimally seeded level, the kernel-space callers waiting
for a seeded DRNG via the API calls of either wait_for_random_bytes or
add_random_ready_callback are woken up. This implies that the mini-
mally seeded level is considered to be sufficient for in-kernel consumers.

e When reaching the fully seeded level, the user-space callers waiting for a
fully seeded DRNG via the getrandom system call or /dev/random are
woken up. This means that the fully seeded level is considered to be
sufficient for user-space consumers.

Note, the initial seeding level with 32 bits is implemented to ensure that early
boot requests are served with random numbers having some entropy, i.e. the
DRNG has some meaningful level of entropy for non-cryptographic use cases as
soon as possible.

2.3.2 Seeding Examples

The following tables provide examples how the seeding is performed by the
LRNG. The tables contain various seeding stages, how much data is injected
into the DRNG, and finally actions performed by the LRNG at the respective
seeding level.

The following table shows the seeding during boot time with the default
entropy levels for the fast noise sources as outlined in sections 2.5.2 and 2.5.3.

M (Considering that the maximum request size is 4096 bytes defined by
LRNG_DRNG_MAX_REQSIZE (i.e. each request is segmented into 4096 byte chunks) and at
most 220 requests defined by LRNG_DRNG_RESEED_THRESH can be made before a forced reseed
takes place, at most 4096 - 220 = 4,294,967,296 bytes can be obtained from the DRNG
without a reseed operation.

12 After boot, the ChaCha20 DRNG state is also used for the atomic DRNG state. Although
both DRNGs are controlled by separate and isolated objects, the DRNG state is identical.
As the LRNG_DRNG_RESEED_THRESH is enforced local to each DRNG object, the theoretical
maximum number of random bytes the ChaCha20 DRNG state could generate before a forced
reseed is twice the amount listed before — once for the DRNG object and once for the atomic
DRNG object.

20



Seed Noise Noise LRNG behavior
Stage source source
data bits entropy
bits
Receipt IRQ: 256 IRQ: 32 /dev/random blocked
of 32 Jitter: 256 | Jitter: 16 getrandom(0) blocked
fresh CPU: 256 CPU: 8 /dev/urandom operational
TRQs wait_for_random_bytes blocked
add_random_ready_callback blocked
get_random_bytes operational
Receipt IRQ: 256 IRQ: 104 /dev/random blocked
of 104 Jitter: 256 | Jitter: 16 getrandom(0) blocked
fresh CPU: 256 CPU: 8 /dev/urandom operational
TIRQs wait_for_random_bytes operational
add_random_ready_callback operational
get_random_bytes operational
Receipt IRQ: 256 TRQ: 232 /dev/random operational
of 232 Jitter: 256 | Jitter: 16 getrandom(0) operational
fresh CPU: 256 CPU: 8 /dev/urandom operational
TRQs wait_for_random_bytes operational
add_random_ready_callback operational
get_random_bytes operational

The next table outlines the runtime reseeding behavior with again assuming
the fast noise sources have the default entropy levels.

21




Seed Noise Noise LRNG behavior
Stage source source
data bits entropy
bits
2000 IRQ: 256 IRQ: 256 /dev/random operational
unused Jitter: 256 | Jitter: 16 getrandom(0) operational
IRQs in CPU: 256 CPU: 8 /dev/urandom operational
entropy wait_for_random_bytes operational
pool add_random_ready_callback operational
get_random_bytes operational
104 IRQ: 104 TIRQ: 104 /dev/random operational
unused Jitter: 256 | Jitter: 16 getrandom(0) operational
IRQs in CPU: 256 CPU: 8 /dev/urandom operational
entropy wait_for_random_bytes operational
pool add_random_ready_callback operational
get_random_bytes operational
103 IRQ: 103 TRQ: 103 /dev/random operational
unused Jitter: 256 | Jitter: 16 getrandom(0) operational
IRQs in CPU: 256 CPU: 8 /dev/urandom operational
entropy wait_for_random_bytes operational
pool add_random_ready_callback operational
get_random_bytes operational
0 unused IRQ: 0 TIRQ: 0 /dev/random operational
IRQs in | Jitter: 256 | Jitter: 16 getrandom(0) operational
entropy CPU: 256 CPU: 8 /dev/urandom operational
pool wait_for_random_bytes operational

add_random_ready_callback operational
get_random_bytes operational

The followin

g table outlin

es the runtime reseeding behavior assuming the

fast noise sources are configured to deliver zero bits of entropy.

Seed Noise Noise LRNG behavior
Stage source source
data bits entropy
bits

2000 IRQ: 256 IRQ: 256 /dev/random operational
unused Jitter: 256 Jitter: 0 getrandom(0) operational
IRQs in CPU: 256 CPU: 0 /dev/urandom operational
entropy wait_for_random_bytes operational

pool add_random_ready_callback operational

get_random_bytes operational

0 unused IRQ: 0 IRQ: 0 /dev /random operational
IRQs in Jitter: 256 Jitter: 0 getrandom(0) operational
entropy CPU: 256 CPU: 0 /dev/urandom operational

pool wait_for_random_bytes operational

add_random_ready_callback operational
get_random_bytes operational

22




2.3.3 NUMA Systems

To prevent bottlenecks in large systems, the DRNG will be instantiated once
for each NUMA node. The instantiations of the DRNGs happen all at the same
time when the LRNG is initialized.

The question now arises how are the different DRNGs seeded without re-
using entropy or relying on random numbers from a yet insufficiently seeded
LRNG. The LRNG seeds the DRNGs sequentially starting with the one for
NUMA node zero — the DRNG for NUMA node zero is seeded with the approach
of 32/128/256 bits of entropy stepping discussed above. Once the DRNG for
NUMA node 0 is seeded with 256 bits of entropy, the LRNG will seed the DRNG
of node one when having again 256 bits of entropy available. This is followed by
seeding the DRNG of node two after having again collected 256 bits of entropy,
and so on.

When producing random numbers, the LRNG tries to obtain the random
numbers from the NUMA node-local DRNG. If that DRNG is not yet seeded,
it falls back to using the DRNG for node zero.

Note, to prevent draining the entropy pool on quiet systems, the time-based
reseed trigger, which is 600 seconds per default, will be increased by 100 seconds
for each activated NUMA node beyond node zero. Still, the administrator is
able to change the default value at runtime.

2.3.4 Flexible Design

Albeit the preceding sections look like the DRNG and the management logic
are highly interrelated, the LRNG code allows for an easy replacement of the
DRNG with another deterministic random number generator. This flexible
design allowed the implementation of the ChaCha20 DRNG if the SP800-90A
DRBG using the kernel crypto API is not desired.

To implement another DRNG, all functions in struct lrng_crypto_cb in
“Irng.h” must be implemented. These functions cover the allocation/dealloca-
tion of the DRNG and the entropy pool read hash as well as their usage. This
function pointer data structure also holds the callbacks to the hash used to
process the entropy pools.

The implementations can be changed at runtime. The default implemen-
tation is the ChaCha20 DRNG using a software-implementation of the used
ChaCha20 stream cipher and the SHA-256 hash'® for accessing the entropy
pools.

2.3.5 Covered Design Concerns of Legacy /dev/random

Starting with kernel 5.8, the legacy /dev/random implementation seeds the ex-
ternal random32 PRNG with data directly taken from the fast_ pool where that
same data is added to the entropy pool. This implies that data believed to hold
entropy is used twice for different purposes which is considered to be an archi-
tectural weakness. In addition, the random32 PRNG performs a cryptographic
non-secure processing of data which may leak entropy. In this case, the legacy
/dev/random heuristically credits entropy to data that may have no entropy.

131n case CONFIG_CRYPTO is not selected during the kernel compilation, SHA-1 is used.

23



The LRNG covers this aspect by only sending data to the random32 PRNG
that is not used by the LRNG.

Additional concerns regarding the design and implementation of the legacy
/dev/random and their coverage in the LRNG are given in [8] section 4.4.

2.4 LRNG Data Structures

The LRNG uses three main data structures:

e The data from the interrupt noise source is processed with a per-CPU
entropy pool. In addition, a per-CPU data array that can hold the con-
catenated time stamps is maintained. Both are accessed lockless since
the currently executing CPU’s entropy pool and data array is used. Dur-
ing access to the entropy pool, the LRNG though takes a lock since the
entropy pool is also read when the hash is calculated for filling the seed
buffer. As the filling of the seed buffer is very infrequently (see above
for the reseed periods of the DRNG), the lock is hardly contented which
allows the conclusion that the entropy collection operates quasi-lockless.

e The deterministic random number generator data structure for the DRNG
holds the reference to the DRNG instance and the hash instance and
associated meta data needed for its operation. The DRNG is managed
with a separate data structure. When using the DRNG, a full read /write
lock is used to guard (a) against replacement of the DRNG reference while
operating on the DRNG state, and (b) to read/write the DRNG state.
Contrarily when using the hash, only a read-lock is used to guard against
the replacement of the hash reference. This implies that the hash state is
kept on the stack of the calling application.

2.5 Interrupt Processing

The LRNG hooks a callback into the bottom half interrupt handler at the same
location where the legacy /dev/random places its callback hook.

The LRNG interrupt processing callback is a void function that also does
not receive any input from the interrupt handler. That interrupt processing
callback is the hot code path in the LRNG and special care is taken that it is as
short as possible and that it operates without locking. The following processing
happens when an interrupt is received and the LRNG is triggered:

1. A high-resolution time stamp is obtained using the service random_get_entropy
kernel function. Although that function returns a 64-bit integer, only the
bottom 8 bits, i.e. the fast moving bits, are used for further processing.
To ensure fast processing, these 8 bits are concatenated and stored in the
operating CPU’s data array. After the receipt of 1,024 time stamps, the
data array with all concatenated time stamps is inserted into the currently
executing CPU’s entropy pool. During boot time until the LRNG reaches
the fully seeded level, the 32 least significant bits of the data are directly
inserted into the CPU’s entropy pool. Entropy is contained in the varia-
tions of the time of events and its time delta variations. Figure 2.1 depicts
the time stamp array holding the 8-bit time stamp values.

24



2. The health tests discussed in section 2.5.4 are performed on each received
time stamp where the truncated time stamp value is forwarded to the
health test. Unless 1,024 time stamps have been received, the processing
of an interrupt stops now.

3. The per-CPU data array is added to the same CPU’s entropy pool by
performing a hash update operation. This approach works as the per-
CPU entropy pool is managed as the message digest state. When data
of the per-CPU entropy is to be extracted, a hash final operation is per-
formed followed by an immediate re-initialization of the state buffer using
the message digest of the previous extraction. In case the continuous com-
pression support is disabled, the hash operation is not performed. Instead,
the oldest entropy values in the data array are overwritten with the latest
entropy value. In case the continuous compression operation is disabled,
the hash update operation is conducted at the time of obtaining random
numbers from the entropy pool requested to seed the DRNG.

4. The LRNG increases the per-CPU counter of the received interrupt events
by the number of healthy interrupts stored in the per-CPU data array.
This counter is translated into an entropy statement when the LRNG
wants to know how much entropy is present in the entropy pool. This
counter is also adjusted when reading data from the entropy.

5. If equal or more than /proc/sys/kernel/random/read wakeup threshold
healthy bits are received by all per-CPU entropy pools, the wait queue
where readers wait for entropy is woken up. Note, to limit the amount of
wakeup calls if the entropy pool is full, a wakeup call is only performed
after receiving 32 interrupt events. The reason is that the smallest amount
of random numbers generated from the entropy pool 32 bits anyway, i.e.
the initially seeded level.

6. If all DRNG instances are fully seeded, the processing stops. This implies
that only during boot time the next step is triggered. At runtime, the
interrupt noise source will not trigger a reseeding of the DRNG.

7. If less than LRNG_IRQ_ENTROPY_BITS healthy bits are received, the pro-
cessing of the LRNG interrupt callback terminates. This value denomi-
nates the number of healthy bits that must be collected to assume this bit
string has 256 bits of entropy. That value is set to a default value of 256
(interrupts). Section 2.5.1 explains this default value. Note, during boot
time, this value is set to 128 bits of entropy.

8. Otherwise, the LRNG triggers a kernel work queue to perform a seeding
operation discussed in section 2.7.

The entropy collection mechanism is available right from the start of the kernel.
Thus even the very first interrupts processed by the kernel are recorded by the
aforementioned logic.

In case the underlying system does not support a high-resolution time stamp,
step 2 in the aforementioned list is changed to fold the following 32 bit values
each into one bit and XOR all of those bits to obtain one final bit:

e IRQ number,

25



e High 32 bits of the instruction pointer,
e Low 32 bits of the instruction pointer,

e A 32 bit value obtained from a register value — the LRNG iterates through
all registers present on the system.

2.5.1 Entropy Amount of Interrupts

The question now arises, how much entropy is generated with the interrupt noise
source. The current implementation implicitly assumes one bit of entropy per
time stamp obtained for one interrupt!4.

When the high-resolution time stamp is not present, the entropy contents
assumed with each received interrupt is divided by the factor defined with
LRNG_IRQ_OVERSAMPLING_FACTOR. With different words, the LRNG needs to
collect LRNG_IRQ_OVERSAMPLING_FACTOR more interrupts to reach the same level
of entropy than when having the high-resolution time stamp. That value is set
to 10 as a default.

The entropy of high-resolution time stamps is provided with the fast-moving
least significant bits of a time stamp which is supported by the quantitative
measurement shown in section 3.2. Although only one bit of entropy is assumed
to be delivered with a given time stamp the LRNG uses the 8 least significant
bits (LSB) of the time stamp to provide a cushion for ensuring that at any given
time stamp there is always at least one bit of entropy collected on all types of
environments.

However, the question may be raised of why not use more data of the time
stamp, i.e. why not using 32 bits or the full 64 bits of the time stamp to
increase that cushion? There main answer is performance. The collection of a
time stamp and its processing with a hash to generate a new entropy pool state
is performed as part of an interrupt handler. Therefore, the performance of the
LRNG in this code section is highly performance-critical. To limit the impact on
the interrupt handler, the LRNG concatenates the 8 LSB of 1,024 time stamps
received by the current CPU before those 1,024 bytes are injected into the per-
CPU entropy pool. The performance of this approach is demonstrated with the
measurements shown in section 4.2. The second aspect is that the higher bits
of the time stamp must always be considered to have zero bits of entropy when
considering the worst case of a skilled attacker. As the LRNG cannot identify
whether it is under attack by a skilled attacker, it always assumes it is under
attack.

The Linux kernel allows unprivileged user space processes to monitor the ar-
rival of interrupts by reading the file /proc/interrupts. Also, assuming a remote
attacker connected to the victim system running the LRNG via a low-latency
network link, the attacker is able to trigger an interrupt via a network packet and
predict the processing of the interrupt and thus the time stamp generation by
the LRNG with a certain degree of accuracy. The LRNG uses a high-resolution
time stamp that executes with nanosecond precision on 1 GHz systems. Lo-
cal attackers via /proc/interrupts as well as remote attackers via low-latency

14That value can be changed if the default is considered inappropriate. At compile time, the
value of LRNG_IRQ_ENTROPY_BYTES can be altered. This value defines the number of interrupts
that must be received to obtain an entropy content equal to the security strength of the used
DRNG.

26



networks are expected to be measure the occurrence of an interrupt with a mi-
crosecond precision. The distance between a microsecond and a nanosecond
is 210, Thus, when the attacker is assumed to predict the interrupt occurrence
with a microsecond precision and the time stamp operates with nanosecond pre-
cision, 10 bits of uncertainty remains that cannot be predicted by that attacker.
Hence, only these 10 bits can deliver entropy.

To ensure the LRNG interrupt handling code has the maximum performance,
it processes time stamp values with a number of bits equal to a power of two.
Thus, the LRNG implementation uses 8 LSB of the time stamp.

During boot time, the presence of attackers is considered to be very limited
as no remote access is yet possible and no local attack applications are assumed
to execute. On the other hand, the performance of the interrupt handler is not
considered to be very critical during the boot process. Thus, the LRNG uses
the 32 LSB of the time stamp that is injected into the per-CPU data array when
the time stamp is collected — the LRNG still awards this time stamp one bit of
entropy. Once the LRNG is considered to be fully seeded — see section 2.3.1 —
the aforementioned runtime behavior of concatenating the 8 LSB of 1,024 time
stamps before mixing them into the per-CPU entropy pool is enabled.

2.5.2 Entropy of CPU Noise Source

The noise source of the CPU is assumed to have one 32th of the generated
data size — 8 bits of entropy. The reason for that conservative estimate is
that the design and implementation of those noise sources is not commonly
known and reviewable. The entropy value can be altered by writing an integer
into /sys/module/lrng archrandom/parameters/archrandom or by setting the
kernel command line option of 1rng_archrandom.archrandom.

2.5.3 Entropy of CPU Jitter RNG Noise Source

The CPU Jitter RNG noise source is assumed provide 16th bit of entropy per
generated data bit. Albeit studies have shown that significant more entropy is
provided by this noise source, a conservative estimate is applied.

The entropy value can be altered by writing an integer into /sys/module/l-
rng_jent/parameters/jitterrng or by setting the kernel command line option of
lrng_jent.jitterrng.

2.5.4 Health Tests

The LRNG implements the following health tests:
o Stuck Test
o Repetition Count Test (RCT)
o Adaptive Proportion Test (APT)

Those tests are detailed in the following sections.

Please note that these health tests are only performed for the interrupt noise
source. Other noise sources like the Jitter RNG or the CPU-based noise sources
are not covered by these tests as they are fully self-contained noise sources where
the LRNG does not have access to the raw noise data and does not include a

27



model of the noise source to implement appropriate health tests. The LRNG
considers both as external noise source. Thus, the user must ensure that either
those other noise sources implement all health tests as needed or the kernel must
be started such that these noise sources are credited with zero bits of entropy.
Not crediting any entropy to these other noise sources can be achieved with the
following kernel command line options:

e CPU-based noise source: lrng_archrandom.archrandom=0
o Jitter RNG: 1lrng_jent.jitterrng=0

These options ensure that random data from the noise sources are pulled, but
are not credited with any entropy.

The RCT, and the APT health test are only performed when the kernel
is booted with fips=1 and the kernel detects a high-resolution time stamp
generator during boot.

In addition, the health tests are only enabled if a high-resolution time stamp
is found. Systems with a low-resolution time stamp will not deliver sufficient
entropy for the interrupt noise source which implies that also the health tests
are not applicable.

Stuck Test The stuck test calculates the first, second and third discrete
derivative of the time stamp to be processed by the per-CPU data array. Only
if all three values are zero, the received time delta is considered to be non-stuck.
The first derivative calculated by the stuck test verifies that two successive time
stamps are not equal, i.e. are “stuck” The second derivative calculates that
there is no linear repetitive signal.

The third derivative of the time stamp is considered relevant based on the
following: The entropy is delivered with the variations of the occurrence of
interrupt events, i.e. it is mathematically present in the time differences of
successive events. The time difference, however, is already the first discrete
derivative of time. Now, if the time difference delivers the actual entropy, the
stuck test shall catch that the time differences are not stuck, i.e. the first
derivative of the time difference (or the second derivative of the absolute time
stamp) shall not be zero. In addition, the stuck test shall ensure that the
time differences do not show a linear repetitive signal — i.e. the second discrete
derivative of the time difference (or the third discrete derivative of the absolute
time stamp) shall not be zero.

Repetition Count Test The LRNG uses an enhanced version of the Repe-
tition Count Test (RCT) specified in SP800-90B [11] section 4.4.1. Instead of
counting identical back-to-back values, the input to the RCT is the counting of
the stuck values during the processing of received interrupt events. The data
that is mixed into the entropy pool is the time stamp. As the stuck result in-
cludes the comparison of two back-to-back time stamps by computing the first
discrete derivative of the time stamp, the RCT simply checks whether the first
discrete derivative of the time stamp is zero. If it is zero, the RCT counter is
increased. Otherwise, the RCT counter is reset to zero.

The RCT is applied with o = 273° compliant to the recommendation of
FIPS 140-2 1G 9.8.

28



During the counting operation, the LRNG always calculates the RCT cut-
off value of C. If that value exceeds the allowed cut-off value, the LRNG will
trigger the health test failure discussed below. An error is logged to the kernel
log that such RCT failure occurred.

This test is only applied and enforced in FIPS mode, i.e. when the kernel
compiled with CONFIG_CONFIG_FIPS is started with fips=1.

Adaptive Proportion Test Compliant to SP800-90B [11] section 4.4.2 the
LRNG implements the Adaptive Proportion Test (APT). Considering that the
entropy is present in the least significant bits of the time stamp, the APT is
applied only to those least significant bits. The APT is applied to the four least
significant bits.

The APT is calculated over a window size of 512 time deltas that are to
be mixed into the entropy pool. By assuming that each time stamp has (at
least) one bit of entropy and the APT-input data is non-binary, the cut-off
value C' = 325 as defined in SP800-90B section 4.4.2.

This test is only applied and enforced in FIPS mode, i.e. when the kernel
compiled with CONFIG_CONFIG_FIPS is started with fips=1.

Runtime Health Test Failures If either the RCT, or the APT health test
fails irrespective whether during initialization or runtime, the following actions
oceur:

1. The entropy of the entire entropy pool is invalidated.

2. All DRNGs are reset which imply that they are treated as being not seeded
and require a reseed during next invocation.

3. The SP800-90B startup health test are initiated with all implications dis-
cussed in section 2.5.4. That implies that from that point on, new events
must be observed and its entropy must be inserted into the entropy pool
before random numbers are calculated from the entropy pool.

SP800-90B Startup Tests The aforementioned health tests are applied to
the first 1,024 time stamps obtained from interrupt events. In case one error is
identified for either the RCT, or the APT, the collected entropy is invalidated
and the SP800-90B startup health test is restarted.

As long as the SP800-90B startup health test is not completed, all LRNG
random number output interfaces that may block will block and not generate
any data. This implies that only those potentially blocking interfaces are defined
to provide random numbers that are seeded with the interrupt noise source being
SP800-90B compliant. All other output interfaces will not be affected by the
SP800-90B startup test and thus are not considered SP800-90B compliant.

To summarize, the following rules apply:

e SP800-90B compliant output interfaces

— /dev/random

— getrandom(2) system call when called with a flag that does not in-
clude GRND_INSECURE

29



— get_random_bytes kernel-internal interface when being triggered by
the callback registered with add_random_ready_callback

e SP800-90B non-compliant output interfaces

— /dev/urandom

— getrandom(2) system call when called with GRND_INSECURE

— get_random_bytes kernel-internal interface called directly

— randomize_page kernel-internal interface

— get_random_u32 and get_random_u64 kernel-internal interfaces

— get_random_u32_wait, get_random_u64_wait, get_random_int_wait,
and get_random_long_wait kernel-internal interfaces

2.6 HID Event Processing

The LRNG picks up the HID event numbers of each HID event such as a key
press or a mouse movement by implementing the add_input_randomness func-
tion. The following processing is performed when receiving an event:

1. The LRNG checks if the received event value is identical to the previous
one. If so, the event is discarded to prevent auto-repeats and the like to
be processed.

2. The event values are concatenated to the per-CPU data array for inter-
rupts as well.

The LRNG does not credit any entropy for the HID event values.

2.7 DRNG Seeding Operation

The seeding operation obtains random data from the entropy pool. In addition
it pulls data from the fast entropy sources of the CPU noise source if available.
As these noise sources provide data on demand, care must be taken that they
do not monopolize the interrupt noise source. This is ensured with the design
choice to pull data from these fast noise sources at the time the interrupt noise
source has sufficient entropy.

The (re)seeding logic tries to obtain 256 bits of entropy from the noise
sources. However, if less entropy can only be delivered, the DRNG reseed-
ing is only performed if at least 128 bits of entropy collectively from all noise
sources can be obtained.

The entropy pool has a size of 128 32-bit words. The value of 128 words is
the default but a different size can be selected during compile time.

For efficiency reasons, the seeding operation uses a seed buffer depicted in
figure 2.1 that is three blocks of 256 bits. The first block is filled with data from
the hashed data from the entropy pools. That buffer receives as much data from
the hash operation as entropy can be pulled from the entropy pool. In the worst
case when no new interrupts are received a zero buffer will be injected into the
DRNG.

The second and third 256-bit blocks are dedicated the fast noise sources and
is filled with data from those noise sources —i.e. RDSEED and the Jitter RNG.

30



If the fast noise sources is deactivated, its 256 bit block is zero and zero bits of
entropy is assumed for this block. The fast noise source is only pulled if either
entropy was obtained from the slow noise sources or the data is intended for the
DRNG. The reason is that the fast noise sources can dominate the slow noise
sources when much entropic data is required.

When reading the per-CPU entropy pools, the entire entropy pool and the
auxiliary pool are processed with the hash function. The result of the hash
function is used as the new auxiliary pool state. During the hashing, the LRNG
processes the amount of entropy assumed to be present in the entropy pool. If
the entropy is smaller than the requested data size, the hash output returned to
the DRNG reseed operation is truncated to a size equal to the amount of entropy
that is present in the entropy pool. This operation is followed by reducing the
assumed entropy in the pool by the amount returned by the hash operation.

Finally, also a 32 bit time stamp indicating the time of the request is mixed
into the DRNG. That time stamp, however, is not assumed to have entropy and
is only there to further stir the state of the DRNG.

During boot time, the number of required interrupts for seeding the DRNG
is first set to an emergency threshold of one word, i.e. 32 bits. This is followed
by setting the threshold value to deliver at least 128 bits of entropy. At that
entropy threshold, the DRNG is considered “minimally” seeded — the value of
128 bits covers the minimum entropy requirement specified in SP800-131A ([3])
and complies with the minimum entropy requirement from BSI TR-02102 ([4])
as well. When reaching the minimal seed level, the threshold for the number of
required interrupts for seeding the DRNG is set to LRNG_IRQ_ENTROPY_BITS to
allow the DRNG to be seeded with full security strength.

2.8 LRNG-external Noise Sources

The LRNG also supports obtaining entropy from the following data sources
and noise sources that are external to the LRNG. The data is injected into the
auxiliary pool by hashing the input data together with the current auxiliary
pool to form the new auxiliary pool statel.
During the reseeding operation of the DRNG, any user-space entropy provider
waiting via select(2) or kernel space entropy provider using the add_hwgenerator_randomness
API call are triggered to provide one buffer full of data. This data is mixed into
the auxiliary pool. This approach shall ensure that the LRNG-external noise
sources may provide entropy at least once each DRNG reseed operation.

2.8.1 Kernel Hardware Random Number Generator Drivers

Drivers hooking into the kernel HW-random framework can inject entropy di-
rectly into the auxiliary pool. Those drivers provide a buffer to the entropy
pool and an entropy estimate in bits. The auxiliary pool uses the given size of
entropy at face value. The interface function of add_hwgenerator_randomness
is offered by the LRNG.

2.8.2 Injecting Data From User Space
User space can take the following actions to inject data into the DRNG:

31



o When writing data into /dev/random or /dev/urandom, the data is added
to the auxiliary pool and triggers a reseed of the DRNGs at the time the
next random number is about to be generated. The LRNG assumes it has
zero bits of entropy.

o When using the privileged IOCTL of RNDADDENTROPY with /dev/random,
the caller can inject entropic data into the auxiliary pool and define the
amount of entropy associated with that data.

2.8.3 Auxiliary Pool

The auxiliary pool is maintained in compliance with [11] section 3.1.6 which
requires that noise sources must be combined using a vetted conditioning com-
ponent.

The auxiliary pool is processed with the available hash and calculates a
message digest of the pool content and the newly provided data. The output
of the hash operation is the new content of the auxiliary pool. In addition,
it maintains an entropy estimator counting the received entropy. The entropy
estimator is capped to a maximum of the digest size of the used hash as this
hash cannot maintain more entropy.

The auxiliary pool is processed with the hash function when generating ran-
dom numbers to seed the DRNG at the same time when the entropy pool is
processed. Thus, both, the entropy pool and the auxiliary pool, are simultane-
ously used as noise data provider to seed the DRNG.

The entropy estimator is decreased by the amount of data read via the hash.

2.9 DRBG

If the SP800-90A DRBG implementation is used, the default DRBG used by the
LRNG is the CTR DRBG with AES-256. The reason for the choice of a CTR
DRBG is its speed. The source code allows the use of other types of DRBG by
simply defining a DRBG reference using the kernel crypto API DRBG string —
see the top part of the source code for examples covering all types of DRBG.

All DRNGs are always instantiated with the same DRNG type.

The implementation of the DRBG is taken from the Linux kernel crypto
API. The use of the kernel crypto API to provide the cipher primitives allows
using assembler or even hardware-accelerator backed cipher primitives. Such
support should relieve the CPU from processing the cryptographic operation as
much as possible.

The input with the seed and re-seed of the DRBG has been explained above
and does not need to be re-iterated here. Mathematically speaking, the seed and
re-seed data obtained from the noise sources and the LRNG external sources
are mixed into the DRBG using the DRBG “update” function as defined by
SP800-90A.

The DRBG generates output with the DRBG “generate” function that is
specified in SP800-90A. The DRBG used to generate two types of output that
are discussed in the following subsections.

32



2.9.1 /dev/urandom and get_random_bytes_full

Users that want to obtain data via the /dev/urandom user space interface or
the get_random_bytes_full in-kernel API are delivered data that is obtained
from the DRNG “generate” function. I.e. the DRNG generates the requested
random numbers on demand.

Data requests on either interface is segmented into blocks of maximum 4096
bytes. For each block, the DRNG “generate” function is invoked individually.
According to SP800-90A, the maximum numbers of bytes per DRBG “generate”
request is 2'° bits or 2'6 bytes which is significantly more than enforced by the
LRNG.

In addition to the slicing of the requests into blocks, the LRNG maintains
a counter for the number of DRNG “generate” requests since the last reseed.
According to SP800-90A, the number of allowed requests before a forceful reseed
is 248 — a number that is very high. The LRNG uses a much more conservative
threshold of 22°requests as a maximum. When that threshold is reached, the
DRBG will be reseeded by using the operation documented in section 2.7 before
the next DRNG “generate” operation commences.

The handling of the reseed threshold as well as the capping of the amount of
random numbers generated with one DRNG “generate” operation ensures that
the DRNG is operated compliant to all constraints in SP800-90A.

2.9.2 /dev/random

The random numbers to be generated for /dev/random are defined to have a
special property: it only provides data once at least 256 bits of entropy have
been collected by the LRNG.

2.10 ChaCha20 DRNG

If the kernel crypto API support and the SP800-90A DRBG is not desired,
the LRNG uses the standalone C implementations for ChaCha20 to provide a
DRNG. In addition, the standalone SHA-256 C implementation is used to read
the entropy pool.

The ChaCha20 DRNG is implemented with the components discussed in the
following section. All of those components rest on a state defined by [9], section
2.3.

2.10.1 State Update Function

The state update function’s purpose is to update the state of the ChaCha20
DRNG. That is achieved by

1. generating one output block of ChaChaZ20,
2. partition the generated ChaCha20 block into two key-sized chunks,
3. and XOR both chunks with the key part of the ChaCha20 state.

In addition, the nonce part of the state is incremented by one to ensure the
uniqueness requirement of [9] chapter 4.

33



2.10.2 Seeding Operation

The seeding operation processes a seed of arbitrary lengths. The seed is seg-
mented into ChaCha20 key size chunks which are sequentially processed by the
following steps:

1. The key-size seed chunk is XORed into the ChaCha20 key location of the
state.

2. This operation is followed by invoking the state update function.
3. Repeat the previous steps for all unprocessed key-sized seed chunks.

If the last seed chunk is smaller than the ChaCha20 key size, only the available
bytes of the seed are XORed into the key location. This is logically equivalent
to padding the right side of the seed with zeroes until that block is equal in size
to the ChaCha20 key.

The invocation of the state update function is intended to eliminate any
potentially existing dependencies between the seed chunks.

2.10.3 Generate Operation

The random numbers from the ChaCha20 DRNG are the data stream produced
by ChaCha20, i.e. without the final XOR of the data stream with plaintext.
Thus, the DRNG generate function simply invokes the ChaCha20 to produce
the data stream as often as needed to produce the requested number of random
bytes.

After the conclusion of the generate operation, the state update function is
invoked to ensure enhanced backtracking resistance of the ChaCha20 state that
was used to generate the random numbers.

2.11 PRNG Registered with Linux Kernel Crypto API

The LRNG supports an arbitrary PRNG registered with the Linux kernel crypto
API, provided its seed size is either 32 bytes, 48 bytes or 64 bytes. To bring
the seed data to be injected into the PRNG into the correct length, SHA-256,
SHA-384 or SHA-512 is used, respectively.

2.12 get_random_bytes in Atomic Contexts

The in-kernel API call of get_random_bytes may be called in atomic context
such as interrupts or spin locks. On the other hand, the kernel crypto API may
sleep during the cipher operations used for the SP800-90A DRBG or the kernel
crypto API PRNGs. The sleep would violate atomic operations.

This issue is solved in the LRNG with the following approach: The boot-
time DRNG provided with the ChaCha20 DRNG and a compile-time allocated
memory for its context will never be released even when switching to another
PRNG. The ChaCha20 DRNG can be used in atomic contexts because it never
causes operations that violate atomic operations.

When switching the DRNG from ChaCha20 to another implementation,
the ChaCha20 DRNG state of the ChaCha20 DRNG is left to continue serv-
ing as a random number generator in atomic contexts. When the caller uses

34



get_random_bytes the still present ChaCha20 DRNG is used to serve that re-

quest instead of the current DRNG. When using the in-kernel API of get_random_bytes_full,
the caller gets access to the selected DRNG type. However, the caller must be

able to handle the fact that this APT call can sleep.

The seeding operation of the “atomic DRNG”, however, cannot be triggered
while get_random_bytes is invoked, because the hash operation used for the
hash call to generate random numbers from the entropy pool could be switched
to the kernel crypto API and thus could sleep. To circumvent this issue, the
seeding of the atomic DRNG is performed when a DRNG is seeded. After the
DRNG is seeded and the atomic DRNG is in need of reseeding based on the
reseed threshold, the time since last reseeding or a forced reseed, a random
number is generated from that DRNG and injected into the atomic DRNG.

Thus to summarize, the kernel function get_random_bytes always accesses
the “atomic DRNG” whereas the function get_random_bytes_full accesses
the DRNG instances that are allocated by the switchable DRNG support. This
implies that get_random_bytes_full must be expected to sleep.

2.13 LRNG External Interfaces
The following LRNG interfaces are provided:

add_interrupt_randomness This function is to be hooked into the interrupt
handler to trigger the LRNG interrupt noise source operation.

add_input_randomness This function is called by the HID layer to stir the
entropy pool with HID event values.

get_random_bytes In-kernel equivalent to /dev/urandom. get_random_ bytes()
is needed for keys that need to stay secret after they are erased from the
kernel. For example, any key that will be wrapped and stored encrypted.
And session encryption keys: we’d like to know that after the session is
closed and the keys erased, the plaintext is unrecoverable to someone who
recorded the ciphertext. This function is appropriate for all in-kernel use
cases. However, it will always use the ChaCha20 DRNG.

get_random_bytes_full This function purpose is identical to get_random_bytes.
The difference is that this function provides access to all features of the
LRNG including to switchable DRNGs. Yet, this function may sleep and
thus is inappropriate for atomic contexts.

get_random_bytes_arch In-kernel service function to safely call CPU noise
sources directly and ensure that the LRNG is used as a fallback if the
CPU noise source is not available.

add_hwgenerator_randomness Function for the HW RNG framework to fill
the LRNG with entropy.

add_random_ready_callback Register a callback function that is invoked when
the LRNG is fully seeded.

del_random_ready_callback Delete the registered callback.

35



get_random_[u32|u64|int|long] These are produced by a cryptographic RNG
seeded from get_random__bytes, and so do not deplete the entropy pool as
much. These are recommended for most in-kernel operations if the result
is going to be stored in the kernel'®.

Specifically, the get_random_int() family do not attempt to do “anti-
backtracking”. If you capture the state of the kernel (e.g. * by snap-
shotting the VM), you can figure out previous get_random__int() return
values. But if the value is stored in the kernel anyway, this is not a prob-
lem.

It is safe to expose get_random__int() output to attackers (e.g. as * net-
work cookies); given outputs 1..n, it’s not feasible to predict outputs
0 or n+1. The only concern is an attacker who breaks into the ker-
nel later; the get_random_int() engine is not reseeded as often as the
get_random__bytes() one.

For network ports/cookies, stack canaries, PRNG seeds, address space
layout randomization, session authentication keys, or other applications
where the sensitive data is stored in the kernel in plaintext for as long as
it’s sensitive, the get random int() family is just fine.

Consider ASLR. We want to keep the address space secret from an outside
attacker while the process is running, but once the address space is torn
down, it’s of no use to an attacker any more. And it’s stored in kernel data
structures as long as it’s alive, so worrying about an attacker’s ability to
extrapolate it from the get_random_ int() DRNG is silly.

Even some cryptographic keys are safe to generate with get_ random__int().
In particular, keys for SipHash are generally fine. Here, knowledge of the
key authorizes you to do something to a kernel object (inject packets to a
network connection, or flood a hash table), and the key is stored with the
object being protected. Once it goes away, we no longer care if anyone
knows the key.

wait_for_random_bytes With this function, a synchronous wait until the DRNG
is minimally seeded is implemented inside the kernel. This function is used
to implement the wait_get_random_ [u32|u64|int|long] functions which
turn the aforementioned get_random_ [u32|u64|int|long] functions into
potentially sleeping functions.

prandom_u32 For even weaker applications, see the pseudorandom generator
prandom_u32(), prandom_max(), and prandom_bytes(). If the random
numbers aren’t security-critical at all, these are far cheaper. Useful for
self-tests, random error simulation, randomized backoffs, and any other
application where you trust that nobody is trying to maliciously mess
with you by guessing the “random” numbers.

/dev/random User space interface to provide random data with full entropy —
read function may block during boot time. /dev/random behaves identical
to the getrandom(2) system call.

15This functionality discussion is taken from a patch set sent to the Linux kernel mailing
list.

36



/dev/urandom User space interface to provide random data from a constantly
reseeded DRNG — the read function will generate random data on demand.
It provides access to a DRNG executing without prediction resistance as
defined in SP800-90A but is subject to regular re-seeding. Note, the buffer
size of the read requests should be as large as possible, up to 4096 bits to
provide a fast operation. See table 2 for an indication of how important
that factor is.

/proc/sys/kernel/random/poolsize Size of the entropy pool in bits.

/proc/sys/kernel/random/entropy__avail Number of interrupt events mixed
into the entropy pool.

/proc/sys/kernel/random/write__wakeup__threshold When entropy_ avail
falls below that threshold, suppliers of entropy are woken up.

/proc/sys/kernel/random/boot__id Unique UUID generated during boot.

/proc/sys/kernel/random/uuid Unique UUID that is re-generated during
each request.

/proc/sys/kernel/random/urandom__min_ reseed__secs Number of sec-
onds after which the DRNG will be reseeded. The default is 600 seconds.
Note, this value can be set to any positive integer, including zero. When
setting this value to zero, the DRNG tries to reseed from the entropy pool
before every generate request. I.e. the DRNG in this case acts like a
DRNG with prediction resistance enabled as defined in [1].

/proc/Irng_ type String referencing the DRNG type and the security strength
of the DRNG. It also contains a hint whether the LRNG operates SP800-
90B compliant, a boolean indicating whether the DRNG is fully seeded
with entropy equal to the DRNG security strength, a boolean indicating
whether the DRNG is seeded the minimum entropy of 128 bits.

/sys/module/Irng__selftest/parameters/selftest__status Querying the sta-
tus and restarting the LRNG self tests - see section 2.14 for details.

/sys/kernel/debug/Irng_ testing/* Virtual files providing test interfaces as
documented in section 2.15.

/sys/module/Irng_testing/parameters/* Virtual files providing test in-
terfaces as documented in section 2.15.

/sys/module/Irng__archrandom/parameters/archrandom Interface to ad-
just entropy estimation from CPU noise source. See section 2.5.2 for de-
tails.

/sys/module/Irng_ jent/parameters/jitterrng Interface to adjust entropy
estimation from Jitter RNG noise source. See section 2.5.3 for details.

IOCTLs are implemented as documented in random(4).

37



2.14 LRNG Self-Tests

When compiling the LRNG with CONFIG_LRNG_SELFTEST, the following self-
tests are performed during startup of the kernel covering all deterministic oper-
ations that are vital to collect and maintain entropy:

e The hash function used to obtain data from the entropy pool is tested.
The power-on self test vector is taken from crypto/testmgr.h for the
hash known answer test using the string “abc” as input.

e The ChaCha20 DRNG is tested by seeding its state, generating random
numbers, and comparing them with expected data. The standalone user
space ChaCha20 DRNG not only allows studying of the LRNG ChaCha20
DRNG in user space, but is also used to generate the known answers.

e The operation to store time stamps in the data array is tested by in-
jecting integers in that array using the management functions and com-
paring the array content with expected values. The expected values for
the array operation are generated during compile time in the function
lrng_data_process_selftest.

All self tests are performed such that they do not have an impact on the regular
operation of the LRNG by using separate memory locations processed by the
tested deterministic operations.

All individual self tests must pass to indicate that the LRNG is successfully
tested. If one self test fails, at least a warning message is printed If the kernel
compilation option CONFIG_LRNG_SELFTEST_PANIC is enabled, the kernel will
crash if a self test fails.

The status of the self-tests can be queried by reading the file
/sys/module/lrng_selftest/parameters/selftest_status. If that file shows
0, all self-tests passed successfully. Otherwise at least one self-test failed. Writ-
ing any value into that file causes the self-tests to be repeated.

Additional self-tests that support the LRNG are:

e The SP800-90A DRBG is self-tested by the Linux kernel crypto API test
manager during instantiation.

e When using a PRNG the LRNG kernel module 1rng_kcapi.ko, its self-
test is driven by the Linux kernel crypto API test manager.

e The raw noise sources are tested at runtime with at least the stuck test.
In addition the SP800-90B start-up and runtime tests discussed in sec-
tion 2.5.4 are performed if they are enabled.

With these tests, all aspects of the LRNG that are vital to the entropy man-
agement and random number generation are self-tested during power-up or at
runtime.

2.15 LRNG Test Interfaces

During kernel compilation, the following interfaces may be enabled allowing
direct access to non-deterministic aspects. It is not advisable to enable these
interfaces for production systems. Yet, these interfaces are considered to be

38


https://github.com/smuellerDD/chacha20_drng/blob/master/chacha20_drng.c
https://github.com/smuellerDD/chacha20_drng/blob/master/chacha20_drng.c

protected against misuse by allowing only the root user to access them. In
addition, any data obtained through these interfaces is not used by the LRNG
to feed the entropy pool. Thus, even when leaving these interfaces enabled on
production systems, the impact on security is considered to be limited.

o The interface /sys/kernel/debug/lrng_testing/lrng raw_hires allows

reading of the raw unconditioned noise data collected while the read oper-

ation is in progress by providing the time stamps of the events collected by

the LRNG that otherwise are injected into the entropy pool. When boot-

ing the kernel with the kernel command line option 1rng_testing.boot_raw_hires_test=1,
the time stamps of the first 1,024 events recorded by the LRNG are stored.

The first read of the 1rng_raw_hires file after boot provides this data in

this case.

e The interface /sys/kernel/debug/lrng_testing/lrng raw_jiffies al-
lows reading of the raw unconditioned Jiffies collected while the read oper-
ation is in progress by providing the Jiffies values collected by the LRNG
that otherwise are injected into the entropy pool (if no high-resolution time
stamp is detected). When booting the kernel with the kernel command
line option lrng_testing.boot_raw_jiffies_test=1, the time stamps
of the first 1,024 events recorded by the LRNG are stored. The first read
of the 1rng_raw_jiffies file after boot provides this data in this case.

e The interface /sys/kernel/debug/lrng_testing/lrng_raw_irq allows
reading of the raw unconditioned interrupt numbers collected while the
read operation is in progress by providing the interrupt number values
collected by the LRNG that otherwise are injected into the entropy pool
(if no high-resolution time stamp is detected) or into the random32 PRNG
external to the LRNG. When booting the kernel with the kernel command
line option 1lrng_testing.boot_raw_irq_test=1, the time stamps of the
first 1,024 events recorded by the LRNG are stored. The first read of the
lrng_raw_irq file after boot provides this data in this case.

o The interface /sys/kernel/debug/lrng_testing/lrng raw_irqflags al-
lows reading of the raw unconditioned interrupt flags collected while the
read operation is in progress by providing the interrupt flag values col-
lected by the LRNG that otherwise are injected into the entropy pool (if
no high-resolution time stamp is detected) or into the random32 PRNG
external to the LRNG. When booting the kernel with the kernel command
line option lrng_testing.boot_raw_irqflag_test=1, the time stamps
of the first 1,024 events recorded by the LRNG are stored. The first read
of the 1rng_raw_irqflags file after boot provides this data in this case.

e The interface /sys/kernel/debug/lrng_testing/lrng_raw_retip allows
reading of the raw unconditioned return instruction pointer collected while
the read operation is in progress by providing the instruction pointer 32
LSB values collected by the LRNG that otherwise are injected into the
entropy pool (if no high-resolution time stamp is detected) or into the
random32 PRNG external to the LRNG. When booting the kernel with
the kernel command line option 1rng_testing.boot_raw_retip_test=1,
the time stamps of the first 1,024 events recorded by the LRNG are stored.

39



The first read of the 1lrng_raw_retip file after boot provides this data in
this case.

e The interface /sys/kernel/debug/lrng_testing/lrng_raw_regs allows
reading of the raw unconditioned interrupt register state collected while
the read operation is in progress by providing the selected register 32 LSB
values collected by the LRNG that otherwise are injected into the entropy
pool (if no high-resolution time stamp is detected). When booting the ker-
nel with the kernel command line option 1rng_testing.boot_raw_regs_test=1,
the time stamps of the first 1,024 events recorded by the LRNG are stored.
The first read of the 1lrng_raw_regs file after boot provides this data in
this case.

o The interface /sys/kernel/debug/lrng_testing/lrng raw_array allows
reading of the raw noise data that has been stored in the per-CPU data
array collected while the read operation is in progress. When booting the
kernel with the kernel command line option 1rng_testing.boot_raw_array=1,
the array content of the first 1,024 events recorded by the LRNG are
stored. The first read of the 1lrng_raw_array file after boot provides this
data in this case.

e The interface /sys/kernel/debug/lrng testing/lrng_irq_perf allows
reading of the number of cycles used to process one interrupt event. This
allows measuring the performance impact of the LRNG on the interrupt
handler. When booting the kernel with the kernel command line op-
tion lrng_testing.boot_irq_perf=1, the performance data of the first
1,024 events recorded by the LRNG are stored. The first read of the
lrng_irq_perf file after boot provides this data in this case.

e The interface /sys/kernel/debug/lrng_testing/lrng_acvt_hash allows
sending data to the used hash operation to calculate a message digest that
is returned to user space. With this interface ACVP testing can be im-
plemented showing compliance of the hash implementation with a NIST
reference implementation.

The helper tool getrawentropy.c is provided to read the files and format the data
for post-processing.

3 Standards Compliance

3.1 FIPS 140-2 Compliance
FIPS 140-2 specifies entropy source compliance in FIPS 140-2 IG 7.18. This

section analyzes each requirement for compliance. The general requirement to
comply with SP800-90B [11] is analyzed in section 3.2.
3.1.1 FIPS 140-2 IG 7.18 Requirement For Statistical Testing

The LRNG is provided with the following testing tools:

e Raw Entropy Tests: The tests obtain the raw unconditioned and unpro-
cessed noise information and records it for analysis with the SP800-90B

40



non-IID statistical test tool. The test tool includes the gathering of raw
entropy for one execution run as well as for the restart tests required in
SP800-90B section 3.1.4. The tool adjusts the data to be processed by
the SP800-90B statistical test tool. The test tool provides the SP800-90B
minimum entropy values.

In particular the first test covers the test requirement of FIPS 140-2 IG 7.18.

3.1.2 FIPS 140-2 IG 7.18 Heuristic Analysis

FIPS 140-2 IG 7.18 requires a heuristic analysis compliant to SP800-90B section
3.2.2. The discussion of this SP800-90B requirement list is given in section 3.2.

3.1.3 FIPS 140-2 IG 7.18 Additional Comment 1

The first test referenced in section 3.1.1 covers this requirement.

The test collects the time stamps of interrupts as they are received by the
LRNG. Instead of having these interrupts processed by the LRNG to add them
to the entropy pool, they are sent to a user space application for storing them
to disk.

The collection of the interrupt data for the raw entropy testing is invoked
from the same code path that would otherwise add it to the LRNG entropy
pool. Thus, the test collects the exact same data that would otherwise have
been used by the LRNG as noise data. Thus, the testing does not alter the
LRNG processing.

However, the tester performing the test should observe the following caveat:
the raw entropy data obtained with the user space tool should be stored on
“disk space” that will not generate interrupts as otherwise the testing would
itself generate new interrupts and thus alter the measurement. For example, a
ramdisk can be used to store the raw entropy data while the test is ongoing. On
common Linux environments, the path /dev/shm is usually a ramdisk that can
readily be used as a target for storing the raw entropy data. If that partition is
non-existent, the tester should mount a ramdisk or use different backing store
that is guaranteed to not generate any interrupts when writing data to it.

3.1.4 FIPS 140-2 IG 7.18 Additional Comment 2

The lowest entropy yield is analyzed by gathering raw entropy data received
from interrupts that come in high frequency. In this case, the time stamps
would be close together where the variations and thus the entropy provided
with these time stamps would be limited.

The extreme case would be to send a flood of ICMP echo request messages
with a size of only one byte to the system under test from a neighboring system
that has a close proximity with very little network latency. Each ICMP request
would trigger an interrupt as it is processed by the network card. The most
extreme case can be achieved when executing the LRNG in a virtual machine
where the VMM host sends a ping flood to the virtual machine. In this case,
network latency would be reduced to a minimum. In the subsequent sections,
test results are shown which are generated with an LRNG executing in a virtual
machine where the host sends a flood of ICMP echo request messages to trigger
a worst case measurement.

41



The entropy is not considered to degrade when using the hardware within
the environmental constraints documented for the used CPU. The online health
tests are intended to detect entropy source degradation. In case of online health
test failures, section 2.5.4 explains the applied actions.

3.1.5 FIPS 140-2 IG 7.18 Additional Comment 3

The LRNG uses the following conditioning components:

e For collecting of entropy data from noise sources, an approved message
digest operation is used.

e For reading the entropy pool and compressing the entropy data, the hash
operation is used. The security strength of the LRNG is the minimum of
the DRBG security strength and the security strength of the hash following
[11] section 3.1.5.1.1 table 1. All ciphers can be tested via ACVT, including
the LRNG-builtin SHA-1 or SHA-256 hash implementation.

3.1.6 FIPS 140-2 IG 7.18 Additional Comment 4

The restart test is covered by the first test documented in section 3.1.1.

3.1.7 FIPS 140-2 IG 7.18 Additional Comment 6

The entropy assessment usually shows this conclusion — tests performed on Intel
x86-based systems show the following conclusions:

The entropy rate for all devices validated with the raw entropy tests outlined
in section 3.1.1 show that the minimum entropy values are always above one
bit of entropy per four data bits. The data bits are the least significant bits of
the time stamp generated by the raw noise.

Assuming the worst case that all other bits in the time delta have no entropy,
that entropy value above one bit of entropy applies to one time stamp.

The LRNG continuously gathers time stamps to be combined with a hash
which is entropy preserving. The hash operation function providing data to the
DRNG gathers only as much bits as time stamps were received. For example,
if the LRNG only received 16 time stamps, the LRNG will only deliver 2 bytes
of data to the DRNG. This effectively implies that the LRNG assumes that one
bit of entropy is received per time stamp.

As the LRNG maintains an entropy pool, its entropy content cannot be larger
than the pool itself. Thus, the entropy content in the pool after collecting as
many time stamps as the entropy pool’s size in bits is the maximum amount
of entropy that can be held. Yet, as new time stamps are received, they are
mixed into the entropy pool. In case the entropy pool is considered to have fully
entropy, existing entropy is overwritten with new entropy.

This implies that the LRNG data generated from the entropy pool has (close
to) 1 bit of entropy per data bit.

3.1.8 FIPS 140-2 IG 7.18 Additional Comment 9

N/A as the raw entropy is a non-I1ID source and processed with the non-ITD
SP800-90B statistical tests as documented in section 3.1.1.

42



3.2 SP800-90B Compliance

This chapter analyzes the compliance of the LRNG to the SP800-90B [11] stan-
dard considering the FIPS 140-2 implementation guidance 7.18 which alters
some of the requirements mandated by SP800-90B.

3.2.1 SP800-90B Section 3.1.1

The collection of raw data for the SP800-90B entropy testing documented in
section 3.1.1 uses 1,000,000 consecutive time stamps obtained in one execution
round.

The restart tests documented in section 3.1.1 perform 1,000 restarts collect-
ing 1,000 consecutive time stamps.

3.2.2 SP800-90B Section 3.1.2

The entropy assessment of the raw entropy data including the restart tests
follows the non-IID track.

3.2.3 SP800-90B Section 3.1.3

Please see section 3.1.7: The entropy of the raw noise source is believed to have
more than one bit of entropy per time stamp to allow to conclude that one
output block of the LRNG has (close to) one bit of entropy per data bit.

The first test referenced in section 3.1.1 performs the following operations
to provide the SP800-90B minimum entropy estimate:

1. Gathering of the raw entropy data of the time stamps.

2. Obtaining the four least significant bits of each time stamp and concate-
nate them to form a bit stream.

3. The bit stream is processed with the SP800-90B entropy testing tool to
gather the minimum entropy.

For example, on an Intel Core i7 Skylake system executing the LRNG in a KVM
guest, the SP800-90B tool shows the following minimum entropy values when
multiplying the SP800-90B tool bit-wise minimum entropy by four since four
bits are processed: 3.452064.

3.2.4 SP800-90B Section 3.1.4

For the restart tests, the raw entropy data is collected for the first 1,000 interrupt
events received by the LRNG after a reboot of the operating system. That
means, for one collection of raw entropy the test system is rebooted. This
implies that for gathering the 1,000 restart samples, the test system is rebooted
1,000 times.

Each restart test round stores its time stamps in an individual file.

After all raw entropy data is gathered, a matrix is generated where each line
in the matrix lists the time stamp of one restart test round. The first column of
the matrix, for example, therefore contains the first time stamp for each boot
cycle of the Linux kernel with the LRNG.

The SP800-90B minimum entropy values column and row-wise is calculated
the same way as outlined above:

43



1. Gathering of the raw restart entropy data of the time stamps.

2. Obtaining the four least significant bits of each time stamp either row-wise
or column-wise and concatenate them to form a bit stream. There are
1,000 bit streams row-wise, and 1,000 bit streams column-wise boundary
generated.

3. The bit streams are processed with the SP800-90B entropy testing tool to
gather the minimum entropy.

In a following step, the sanity check outlined in SP800-90B section 3.1.4.3 is
applied to the restart test results. The steps given in 3.1.4.3 are applied.

For example, on an Intel Core i7 Skylake system executing the LRNG in a
KVM guest, the SP800-90B tool shows the following minimum entropy values
when multiplying the SP800-90B tool bit-wise minimum entropy by four since
eight bits are processed:

o Using the 8 least significant bits of the time stamps in column-wise assess-
ment — lowest entropy value of all 1,000 column entries: 3.455504

o Using the 8 least significant bits of the time stamps in row-wise assessment
— lowest entropy value of all 1,000 column entries: 3.393808

e Sanity check of the 1,000 x 1,000 matrix passes with value of one

With the shown values, the restart test validation passes according to SP800-
90B section 3.1.4.

3.2.5 SP800-90B Section 3.1.5

The conditioning component applied to the interrupt noise source are performed
at different stages as outlined in section 2.1. Although the hashing operation is
used for different stages, the following discussion is applicable to all use cases.

Truncation The truncation operation ensures that the entropy in that data
is at maximum the truncated hash.

The truncation of operation (1) listed in section 2.2 is not affected by the
capping of the entropy, because the quantitative measurement of the existing
entropy using the SP800-90B tool set is performed using that truncated input
data. The LRNG implies an entropy of 1 bit per truncated time stamp and zero
bits of entropy per arbitrary 32-bit word size which means that the entropy
present in the data is always smaller as the data size.

The truncation operation of step (6) listed in section 2.2 verifies that the
truncated data contains at most the amount of entropy as the generated data
size. The remaining part of the truncated data is not exported to any external
entity but remains in the auxiliary pool - when new random data is generated
involving the auxiliary pool, the current auxiliary pool state is always hashed.
This is a deviation from SP800-90B section 3.1.5.1.2 which requires a relative
reduction of entropy. This statement is considered inconsistent with the state-
ment implied in table 1 [11] and therefore wrong depicted with the following
analogy: Assume to have a buffer of 512 bits of data having 256 bits of entropy.
When hashing it with SHA-512, the resulting message digest of 512 bits has 256

44



bits of entropy. When truncating the digest to 256 bits, SP800-90B states the
entropy is 128 bits. However, SP800-90B section 3.1.5.1.1 table 1 states that
full entropy is given to approved hash functions. Assume to use a SHA-512/256
which has a digest size of 256 bits and thus could transport 256 bits of entropy
following table 1. This SHA-512/256 hash operation calculates a SHA-512 hash
truncated to 256 bits. Albeit the cryptographic operation of SHA-512/256 is
identical to the LRNG-applied truncation', SP800-90B table 1 awards 256 bits
of entropy to SHA-512/256 but at the same time SP800-90B would apply only
128 bits to the LRNG-applied truncation. Due to this inconsistency, the LRNG
applies the entropy behavior implicitly specified in table 1, i.e. the entropy is
the minimum of the available entropy and the message digest size.

Concatenation When applying a concatenation operation, the LRNG simply
adds the entropy delivered with each data entry part.

Hash The input of the hash n;, is fixed as it processes the existing per-CPU
entropy pool(s), auxiliary pools and the per-CPU data arrays.

The output of the hash n,,; is usually fixed to the message digest size. The
on exception is the output of the hash n,,; to provide the seed to the DRNG: it is
the minimum of either the digest size of the used hash or the amount of entropy
available in the processed entropy pools based on the number of “unprocessed”
time stamps held in the per-CPU entropy pools.

The following hashes are used for the hash function depending on the loaded
DRNG:

e ChaCha20: SHA-256 in normal case, SHA-1 if kernel is not compiled with
CONFIG_CRYPTO

o SP800-90A Hash DRBG: SHA-512
« SP800-90A HMAC DRBG: SHA-512
« SP800-90A CTR DRBG: SHA-512

In the following, the different hash operations specified in section 2.2 are applied
as follows:

e Compression of entropy delivered from the interrupt noise source when
adding the entropy into the per-CPU entropy pools.

e Compression of entropy delivered from one or more LRNG-external en-
tropy sources when adding the entropy into the auxiliary pool.

e Compression of entropy delivered by the two entropy sources of the auxil-
iary pool on the one side and the collection of the per-CPU entropy pools
on the other side.

The requirement of [11] section 3.1.6 states that when combining two or more
noise sources using a vetted conditioning component, only one noise source is
to be credited with entropy. This requirement is met as follows: according to

16Depending on the runtime configuration the LRNG uses a hash of SHA-512 and fills a
buffer of the DRNG security strength size, i.e. 256 bits.

45



[11] section 2.2 a noise source is the phenomenon delivering entropy. The noise
source data is post-processed with conditioning components and health tests to
form an entropy source. Based on this statement, the collection of the per-CPU
entropy pools together form one entropy source that is compliant to SP800-
90B. Assuming that the data that is written into the auxiliary pool and that
is credited with entropy is provided by an SP800-90B entropy source — as re-
quired with the LRNG usage conditions in section 3.4 with the statement about
the RNDADDENTROPY IOCTL and the add_hwgenerator_randomness function —
the hashing operation of equation 2.4 that hashes the auxiliary pool and the
per-CPU entropy pools together combines entropy sources using a vetted con-
ditioning component. This is in compliance with SP800-90B and allows the
LRNG to credit all entropy sources with entropy.

In addition, when having multiple entropy sources delivering data into the
auxiliary pool, the same consideration applies: the hash operation applied when
adding data to the auxiliary pool combines two or more entropy sources. Thus,
SP800-90B allows considering the entropy of all entropy sources as implemented
by the LRNG.

Note, the reason for hashing the per-CPU entropy pools together with the
auxiliary pool is to ensure backtracking resistance when calculating the next
round of random numbers used to fill the seed buffer used to seed the DRBG
from the entropy sources sources.

Approach for Calculating Entropy Although the aforementioned sections
explain that the input and output sizes may not be fixed, in regular operation
they are quasi-fixed. In order to reseed a DRNG, 256 bits of entropy are to
be generated from the noise source. Although the per-CPU data arrays receive
interrupt time stamps continuously, only the entropy from 256 time stamps
are required as illustrated below. Only when all per-CPU entropy pools have
received too little interrupt time stamps to satisfy the 256 bit entropy request,
less output data is generated. This commonly happens during boot or at runtime
when too much entropy is requested. Though, during boot time, the DRNG will
receive a (re)seed with 256 bits of entropy before the LRNG is considered fully
operational. Therefore, the prior boot-time (re)seed events with less entropy
may even be disregarded for the entropy assessment.

With the given combination of the hash as outlined above, the following
approach for the entropy calculation is taken for each of the data processing
steps outlined in section 2.2:

¢ Function 2.2:

Ninper—cpu poo €dUAlS to 8,192 bits as the per-CPU entropy pool is
8,192 bits in size and 1,024 * 8 bits!'” of the per-CPU data array.

= Noutper—cpu poor 15 the message digest size in bits.

— NWper—CPU pool 18 the message digest size in bits.

e Function 2.3:

17Section 4.2 outlines that the LRNG collection size can be modified at compile time where
the default is 1,024. When a different collection size is chosen, the value needs to be adjusted
accordingly. Yet, such modified value has no impact to the entropy analysis.

46



= Mingus poor €duals to 512 bits as the auxiliary pool pool size is 512 bits
in size plus the provided input data.

= Nouta,, poor 1S the message digest size in bits.

— NWauz pool 1S the message digest size in bits.

e Function 2.4:

_ ) Is t max CPU
Ninhash poors €qUALS 1O Ea:o Noutper—cPU pooly + Nouthash auz

= Mouthash poots 15 the message digest size in bits.

— NWhash pools 15 the message digest size in bits.

3.2.6 SP800-90B Section 3.1.5.1

The hash operation is either SHA-512, SHA-256, or SHA-1 as outlined above
is considered to be a vetted conditioning component. Thus the entropy rate of
the hash output is calculated as follows using the aforementioned variables for
the hash function. In addition, the following consideration applies:

o The entropy content of the input hin,.,_cpy o0 The input entropy of the
hash used to process the per-CPU entropy pool is equal to the entropy
provided by the per-CPU data array and the entropy already present in
the per-CPU entropy pool considering that both data components are
hashed at the same time to form a new per-CPU entropy pool state. Of
course, the entropy held in the per-CPU entropy pool will never be larger
than the digest size of the used hash which is compliant to [11] section
3.1.5.1.1 table 1.

o The entropy content of the input hip,,, ,.,: The input entropy of the
hash used to process the auxiliary pool is equal to the entropy provided
by the noise source and the already collected entropy in the auxiliary
pool considering that both data components are hashed at the same time
to form a new auxiliary pool state. Of course, the entropy held in the
auxiliary pool will never be larger than the digest size of the used hash
which is compliant to [11] section 3.1.5.1.1 table 1.

o The entropy content of the input hin,,,, ,o..: The input entropy of the
hash used to process the entire entropy pool is equal to the entropy found
in all per-CPU entropy pools managed by the hash operation and the
auxiliary pool. Again, the entropy generated by the hash will never be
larger than the digest size of the used hash which is compliant to [11]

section 3.1.5.1.1 table 1.

As stated in [11] section 3.1.5.1.2, vetted conditioning components are allowed
to claim full entropy. In case of full entropy, the following is applied:

* Noutsga_s1a = MUSHA-512 = Noutspa_s12 = 912,
o Poutspa_sse = MWSHA—256 = Noutspya_sse = 290, OT

d h’OUtSHA—l =NWSHA-1 = nOUtSHA—l - 160

47



Based on that conclusion, the entropy rate for each processing step given in
section 2.2 can be illustrated in the following. This entropy assessment uses
Nowt Which depends on the chosen hash operation with the respective value
listed above.

The entropy for the individual time stamps is defined with the following
equation applicable when a high-resolution timer is present — the absence of
a high-resolution timer automatically implies the LRNG is treated as non-
compliant to SP800-90B:

htg = heyy =1 (3.1)

The entropy present in the arbitrary 32 bit word that may be added to the
per-CPU data array is defined with:

gy = 0 (32)

The entropy in the concatenated time stamps found in the per-CPU data
array is calculated as the sum of all time stamps (truncated or not) present in
the per-CPU data array of 1,024 bytes per default — if a different data array
size is used, the right-hand value of the following equation must be adjusted
accordingly:

number time stamps

hpe’r‘fCPU data array — mln( Z (ht{&w} )n, 1024) (33)

n=0

For the maintenance of the per-CPU entropy pool as specified by equa-
tion 2.2, the following entropy rate applies when continuous compression sup-
port is enabled. This formula implies that each output of the per-CPU entropy
pool holds the sum of the entropy of the received per-CPU data array since last
generation of the per-CPU output data and the entropy remained in the per-
CPU entropy pool capped by the message digest size. This operation implies
that the used hash compresses of the entropy available in the different input
data.

m=n—1

hper—CPU pool,, — mln( hper—CPU data arraym + hper—CPU pooln_lanout)

m=

o

(3.4)
When continuous compression support is disabled, the per-CPU entropy pool
maintenance specified by equation 2.2 shows the following entropy rate. The
formula implies that the maximum amount of entropy that can be held depends
on the size of the data array depicted with equation 2.1 since additional entropy
received by the data array overwrites old entropy data. The data array can
hold the maximum amount of entropy event data as defined with its size. After
converting the number of received entropy event data into an entropy statement
using equation 3.1, the maximum amount of entropy held in the data array is
available.

hperfCPU pool, — min(hperfCPU data arrayn, + hperfCPU pooln_lanout) (35)

Similarly, the following equation applies to the entropy of the auxiliary pool
maintenance as specified by equation 2.3. This formula implies that auxiliary

48



pool holds the sum of the entropy of the received data capped by the message
digest size. Again, this operation implies that the used hash compresses the
entropy available in the different input data.

haua pool — min(hinaum pool + hauz pool s nout) (36)

The following equation applies when calculating the slow noise source output
buffer before its truncation as specified by equation 2.4. The formula implies
that the slow noise source buffer before truncation holds the sum of the entropy
of all per-CPU entropy pools plus the auxiliary pool capped by the message
digest size. Again, this operation implies that the used hash compresses the
entropy available in the different input data.

max CPU

hhash pools = mm( E hperfc'PU pool . + hau:v pool nout) (37)
c=0

The entropy present in the truncated slow noise source buffer is the minimum
of the entropy found in the pools and the requested amount of bits which is equal
to the security strength of the DRBG:

requested sizey, = security strength = 256 (3.8)

hs = min(hnash pools; requested sizes) (3.9)

The result of the formulas show that the entropy is simply a sum of the
entropy of all input events capped to the message digest size of the used hash
operation.

When generating the random numbers filling the slow noise source buffer,
the entropy is debited in the following steps. First the entropy estimator of the
auxiliary pool is reduced as much as possible: either by hs or at most to zero.
If not all entropy of hs could have been debited from the auxiliary pool entropy
estimator, then the yet not debited part of h, is debited from the per-CPU
entropy pool entropy estimators.

For example, assume that after the generation of random numbers and fill-
ing the slow noise source buffer its entropy is hy = 256. Assume further, the
auxiliary pool contains hquz poot = 155 and the per-CPU entropy pools of the
assumed 2 CPUs contain hper—cPU pooicpyo = S0 and Aper—cPU poolopy: = 123.
The debit operation performs:
= 256 — 155 = 101

Snot debited

1. Rauz poot = 155 — 155 = 0 leaving h

2. Rper—CPU poolepue = 80—80 = 0 leaving A = 256—155—80 = 21

Snot debited

3. hpeT—C'PU poolcpur — 123 — 21 =102

3.2.7 SP800-90B Section 3.1.6

The LRNG uses the following noise sources:

o The noise source of the timing of the occurrence of interrupts. The entire
SP800-90B analysis covers this one noise source. Thus, the requirements
in this section for the interrupt noise source are trivially met.

49



e The Jitter RNG: This noise source is a complete stand-alone noise source
whose compliance to SP800-90B is vetted independently. If the user con-
siders this noise source to be not SP800-90B compliant, it may credit it
with zero bits of entropy as outlined in section 2.5.4.

e The CPU-based noise source like Intel RDRAND: Like the Jitter RNG,
this noise source is a complete stand-alone noise source whose SP800-90B
compliance is vetted independently. If the user considers this noise source
to be not SP800-90B compliant, it may credit it with zero bits of entropy
as outlined in section 2.5.4.

e A user-space RNGD is allowed to feed entropy into the LRNG via the
RNDADDENTROPY IOCTL. This data is received and processed by the LRNG
with an approved hash. The data is stored in the auxiliary pool. Similarly
all other user space data is fed into the auxiliary pool.

o A kernel space hardware noise source is allowed to feed entropy into the
LRNG via the add_hwgenerator_randomness function. The data is pro-
cessed identically to user space entropy data by applying an approved hash
and storing it in the auxiliary pool.

Additional data that is not treated as noise source data can be injected into
the LRNG but that is not credited with entropy, but received from in-kernel
sources such key codes from HID devices. This additional data is processed
by the vetted conditioning component of the hash before it is injected as seed
data into the DRNG. Thus, this operation complies with the last paragraph of
section 3.1.6.

All random data from all noise sources are either concatenated or are pro-
cessed by a vetted conditioning component before it is used to seed the DRNGs
as allowed by SP800-90C [2] section 5.3.4.

3.2.8 SP800-90B Section 3.2.1 Requirement 1

This entire document is intended to provide the required analysis.

3.2.9 SP800-90B Section 3.2.1 Requirement 2

This entire document in general and chapter 3 in particular is intended to pro-
vide the required analysis.

3.2.10 SP800-90B Section 3.2.1 Requirement 3

There is no specific operating condition other than what is needed for the op-
erating system to run since the noise source is a complete software-based noise
source.

The only dependency the noise source has is a high-resolution timer which
does not change depending on the environmental conditions.

3.2.11 SP800-90B Section 3.2.1 Requirement 4

This document explains the architectural security boundary.

50



The boundary of the implementation is the source code files provided as part
of the software delivery. This source code contains API calls which are to be
used by entities using the LRNG.

3.2.12 SPB800-90B Section 3.2.1 Requirement 5

The per-CPU entropy pools as processed by the hash is the output of the inter-
rupt noise source. l.e. the entropy pools maintained by the hashing operation
holds the data that is given to the DRNG when requesting seeding.

The noise source output without the hashing operation is accessed with
specific tools which add interfaces that are not present and thus not usable when
employing the LRNG in production mode. These additional interfaces are used
for gathering the data used for the analysis documented in section 3.2.3. These
interfaces perform the following operation:

1. Switch the LRNG into raw entropy generation mode. This implies that
each raw entropy event is fed to the raw entropy collection interface and
not processed by the per-CPU data array or otherwise used.

2. When an interrupt event is received, forward the time stamp holding the
entropy to a ring buffer. This operation is performed repeatedly until the
ring buffer is full or the user space application read that ring buffer.

3. When an application requests the reading of the ring buffer, the data is
extracted from the kernel and the ring buffer is cleared.

With this approach, the actual interrupt events which would be processed by
the LRNG are obtained.

The kernel interface is only present if the kernel is compiled with the option
CONFIG_LRNG_RAW_HIRES_ENTROPY. This option should not be set in production
kernels.

3.2.13 SP800-90B Section 3.2.1 Requirement 6
Please see section 3.1.3 for details how and why the raw entropy extraction does
not substantially alter the noise source behavior.

3.2.14 SP800-90B Section 3.2.1 Requirement 7

See section 3.2.4 for a description of the restart test.

3.2.15 SP800-90B Section 3.2.2 Requirement 1

This entire document provides the complete discussion of the noise source.

3.2.16 SPB800-90B Section 3.2.2 Requirement 2

N/A - not mandated by FIPS IG 7.18. The lowest entropy yield is analyzed
with the lower boundary of the raw entropy assessment.

o1



3.2.17 SP800-90B Section 3.2.2 Requirement 3

See sections 3.2.6 for a discussion of the entropy provided by the interrupt noise
source.
A stochastic model is not provided.

3.2.18 SP800-90B Section 3.2.2 Requirement 4

The noise source is expected to execute in the kernel address space. This implies
that the operating system process isolation and memory separation guarantees
that adversaries cannot gain knowledge about the LRNG operation.

3.2.19 SP800-90B Section 3.2.2 Requirement 5

The output of the noise source is non-IID as it rests on the execution time of a
fixed set of CPU operations and instructions.

3.2.20 SP800-90B Section 3.2.2 Requirement 6

The noise source generates the data via the hash generation function as outlined
in section 3.2.5.

Although the hash commonly generates a fixed-length string, this string
length may be reduced by the amount of available entropy as outlined in sec-
tion 3.2.6.

3.2.21 SP800-90B Section 3.2.2 Requirement 7

N/A as no additional noise source is implemented with the interrupt noise
source.

Though, the LRNG employs complete self-contained other noise sources
which may be compliant to SP800-90B by itself. To seed the DRNG main-
tained by the LRNG, the output of all noise sources are concatenated compliant
to SP800-90C [2] section 5.3.4.

3.2.22 SP800-90B Section 3.2.3 Requirement 1
The conditioning component is the hash operation. See section 3.2.5 for a
discussion of the input and output sizes.

3.2.23 SP800-90B Section 3.2.3 Requirement 2

The used hash implementations for the conditioning components functions are
all ACVP-testable. The LRNG offers an ACVP interface to ensure also the
built-in SHA-256 and SHA-1 implementations are testable.

3.2.24 SPB800-90B Section 3.2.3 Requirement 3

For the defined hashes, no key is required.

3.2.25 SP800-90B Section 3.2.3 Requirement 4

For the defined hashes, no key is required.

52



3.2.26 SP800-90B Section 3.2.3 Requirement 5

The conditioning component is the hash operation. See section 3.2.6 for a
discussion of the narrowest internal width and the output block size.

3.2.27 SPB800-90B Section 3.2.4 Requirement 1

Test tools for measuring raw entropy are provided at the LRNG web page.
These tools can be used by everybody without further knowledge of the LRNG.

3.2.28 SP800-90B Section 3.2.4 Requirement 2

The operation of the test tools for gathering raw data are discussed in sec-
tion 3.2.3. This explanation shows that the raw unconditioned data is obtained.

3.2.29 SP800-90B Section 3.2.4 Requirement 3

The provided tools for gathering raw entropy contains exact steps how to per-
form the tests. These steps do not require any knowledge of the noise source.

3.2.30 SP800-90B Section 3.2.4 Requirement 4

The raw entropy tools can be executed on the same environment that hosts the
LRNG. Thus, the data is generated under normal operating conditions.

3.2.31 SP800-90B Section 3.2.4 Requirement 5

The raw entropy tools can be executed on the same environment that hosts the
LRNG. Thus, the data is generated on the same hardware and operating system
that executes the LRNG.

3.2.32 SP800-90B Section 3.2.4 Requirement 6

The test tools are publicly available at LRNG web page allowing the replication
of any raw entropy measurements.

3.2.33 SP800-90B Section 3.2.4 Requirement 7

Please see section 3.1.3 for details how and why the raw entropy extraction does
not substantially alter the noise source behavior.

3.2.34 SPB800-90B Section 4.3 Requirement 1

The implemented health tests comply with SP800-90B sections 4.4 as described
in section 3.2.43.

3.2.35 SP800-90B Section 4.3 Requirement 2
When either health test fails, the kernel:

e Emits a failure log,

e Resets the noise source, and

53


https://www.chronox.de/lrng.html
https://www.chronox.de/lrng.html

e Restarts the SP800-90B startup health tests.

This implies that no data is produced by the LRNG (including its DRNG) when
using the SP800-90B compliant external interfaces.

Both health test failures are considered permanent failures and thus trigger
a full reset.

3.2.36 SPB800-90B Section 4.3 Requirement 3

The following false positive probability rates are applied:

« RCT: The false positive rate is @ = 273 and therefore complies with the
recommended false positive probability.

e APT: The cut-off value is set to 325 compliant to SP800-90B section 4.4.2
for non-binary data at a significance level of a = 2739 with time stamp is
assumed to at least provide one bit of entropy, i.e. H = 118,

3.2.37 SP800-90B Section 4.3 Requirement 4

The LRNG applies a startup health test of 1,024 noise source samples. Addi-
tional tests are applied. The collected noise source samples are re-used for the
generation of random numbers if the startup test was successful.

3.2.38 SPB800-90B Section 4.3 Requirement 5

The noise source supports on-demand testing in the sense that the caller may
restart the kernel.

3.2.39 SP800-90B Section 4.3 Requirement 6

The health tests are applied to the raw, unconditioned time stamp data directly
obtained from the noise source before they are injected into the per-CPU data
array and further processed with the hash conditioning component.

3.2.40 SP800-90B Section 4.3 Requirement 7

The health tests are documented with section 2.5.4.
The tests are executed as follows:

e During startup, the RCT and the APT are applied to 1,024 samples. The
startup test can be triggered again when the caller reboots the kernel.

e At runtime, the RCT is applied to each received time stamp. The APT
collects 512 time stamps. The APT is calculated over all 512 time stamps.
If the test fails, the entire LRNG is reset to drop all existing entropy and
the startup testing is performed again.

3.2.41 SP800-90B Section 4.3 Requirement 8

There are no currently known suspected noise source failure modes.

18Note, the referenced Excel function seems to be imprecise when calculating the value. The
data has been obtained using R-Project with the formula of 1+ gbinom(1 — 2730 512,271).

54



3.2.42 SP800-90B Section 4.3 Requirement 9

N/A as the noise source is pure software. The software is expected to execute
on hardware operating in its defined nominal operating conditions.

3.2.43 SP800-90B Section 4.4

The health tests described in section 2.5.4 are applicable to cover the require-
ments of SP800-90B health tests.

The SP800-90B compliant health tests are implemented with the following
rationale:

RCT The Repetition Count Test implemented by the LRNG compares two
back-to-back time stamps to verify that they are not identical. If the
number of identical back-to-back time stamps reaches the cut-off value of
30, the RCT test raises a failure that is reported and causes a reset the
LRNG. The RCT uses the a cut-off value that is based on the following:
a = 2730 compliant to FIPS 140-2 IG 9.8 and compliant to SP800-90B
which mandates this value to be in the range 272° < o < 274, In
addition, one time stamp is assumed to at least provide one bit of entropy,
i.e. H =1. When applying these values to the formula given in SP800-90B
section 4.4.1, the cut-off value of 31 is calculated.

When the RCT passes, the counter is set to zero for the next time delta
to arrive. In mathematical terms, the verification of back-to-back values
being not identical is the calculation of the first discrete derivative of the
time stamp to show that it is not zero. In addition, the LRNG enhances
the RCT by calculating also the second and third discrete derivative of
the time stamp to be concatenated with the per-CPU data array. With
that, up to 8 consecutive time stamp values are assessed. All derivatives
must always be non-zero in order to pass the RCT. If one discrete deriva-
tive shows a zero, the RCT counter is increased. Thus, the addition of
the second and third derivative makes the RCT even more conservative.
Hence, the first discrete derivative is considered to be identical to the
“approved” RCT specified in SP800-90B section 4.4. In addition, linear
and exponential patterns are identified with the second and third discrete
derivative, respectively. As the additional pattern recognition do not in-
validate the mandatory pattern recognition, this RCT approach therefore
is considered to be an enhanced version of the “approved” RCT and thus
meets the requirement (a) of SP800-90B section 4.5.

APT The LRNG implements the Adaptive Proportion Test as defined in SP800-
90B section 4.4.2. As explained in other parts of the document, one time
stamp value is assumed to have (at least) one bit of entropy. Thus, the
cut-off value for the APT is 325 compliant to SP800-90B section 4.4.2
for non-binary data with a significance level of a = 273°. The APT is
calculated using the four least significant bits of the time stamp. During
initialization of the APT, a time stamp is set as a base. All subsequent
time stamps are compared to the base time stamp. If both values are iden-
tical, the APT counter is increased by one. The window size for the APT
is 512 time stamps. The implementation therefore provides an “approved”
APT.

55



3.3 NIST Clarification Requests

In addition to complying with the requirements of FIPS 140-2 and SP800-90B,
NIST requests the clarification of the following questions.

3.3.1 Sensitivity of Interrupt Timing Measurements

The question that needs to be answered is whether the logic that measures the
interrupt timing is sensitive enough to pick up the variances of the interrupt
timing.

The sensitivity implies that timing variations are picked up and measured.
This is enforced by the stuck test enforced on each interrupt time stamp. That
stuck test requires that the first, second and third discrete derivative of the time
stamp must always be non-zero to accept that time stamp. Therefore, the time
stamp must vary for the received and processed interrupts which implies that
the LRNG health test ensures that the sensitivity of the time stamp mechanism
is sufficient.

3.3.2 Dependency Between Interrupt Timing Measurements

Another question that is raised by NIST asks for a rationale why there are no
dependencies between individual Jitter measurements.

The interrupts are always created by either explicit or implicit human ac-
tions. The LRNG measures the time stamp of the occurrence of these interrupts.
Thus, the LRNG measures the effects of operations triggered by human inter-
ventions. With the presence of a high-resolution time stamp that operates in the
nanosecond range and the assumption that only one bit of entropy is present in
one nanosecond time stamp of one interrupt event, the dependency discussion
therefore focuses on the one (or maybe up to four) least significant bit of the
nanosecond time stamp. With such high-resolution time stamps and considering
that only the least significant bit(s) is/are relevant for the LRNG, dependencies
are considered to be not present for these bits.

3.4 SP800-90B Compliant Configuration

In order to use the LRNG SP800-90B compliant, the following configurations

and settings must be made. These settings are cover requirements for the

compile-time options found in the kernel configuration file .config of the run-

ning kernel. In addition, runtime configurations are to be considered as well.
The following compile-time settings must be observed:

e CONFIG_LRNG must be set to Y.
o CONFIG_LRNG_HEALTH_TESTS must be set to Y.

e CONFIG_LRNG_ARCHRANDOM_TRUST_CPU_STRENGTH must not be set unless
the CPU-based noise source (e.g. RDSEED or RDRAND on Intel) have
an SP800-90B compliant entropy assessment and comply with all require-
ments from SP800-90B.

e CONFIG_RANDOM_TRUST_BOOTLOADER must not be set unless the data pro-
vided by the boot loader have an SP800-90B compliant entropy assessment
and comply with all requirements from SP800-90B.

56



e All kernel code that uses the add_hwgenerator_randomness must either
invoke the function with a zero for the entropy_bits parameter or must
have an SP800-90B compliant entropy assessment and comply with all
requirements from SP800-90B. For example, this call is invoked by the
ATHIK driver or the hardware random number generator driver frame-
work.

The following requirements apply to the runtime configuration:

e The kernel must be booted with the kernel command line option of fips=1
to enable the SP800-90B health test.

e The kernel must be booted with the kernel command line option of 1rng_archrandom.archrandom=0
unless the CPU-based noise source (e.g. RDSEED or RDRAND on Intel)
have an SP800-90B compliant entropy assessment and comply with all
requirements from SP800-90B.

e The kernel must be booted with the kernel command line option of 1rng_jent.jitterrng=0
unless the Jitter RNG noise source has an SP800-90B compliant entropy
assessment and comply with all requirements from SP800-90B'°.

« Filling up the LRNG with entropy using either a user-space RNGD via the
IOCTL RNDADDENTROPY or a kernel-space via the function add_hwgenerator_randomness
is allowed. However, the caller is only allowed to claim entropy associated
with the data and thus increase the LRNG entropy estimation if the noise
source is SP800-90B compliant with its own entropy assessment.

To verify that the SP800-90B compliance is achieved, the file /proc/lrng_type

provides an appropriate status indicator.
To achieve a compliant configuration to SP800-90A and SP800-90B, the

following requirements must be met:
e All requirements for SP800-90B documented in section 3.4 must be met.

e The Linux kernel configuration option of CONFIG_LRNG_DRBG must either
be set to Y or to M. If it is set to M (compile the code as loadable kernel
module), the kernel module Irng_ drbg.ko must be loaded into the kernel
before any caller to the LRNG requiring SP800-90A compliance is active.

Only data obtained from the potentially blocking output interfaces of the LRNG
are SP800-90B compliant. The following interfaces are DRG.3 compliant:

o /dev/random,
e getrandom system call invoked with a zero flag value,

« invoking the in-kernel get_random_bytes or get_random_bytes_full API
call when the callback registered with add_random_ready_callback was
invoked.

9At the time of writing, the user space Jitter RNG is SP800-90B compliant. Patches
ensuring the in-kernel variant is SP800-90B compliant as well when into the kernel for version
5.8.

57



Any other interface is not considered to provide SP880-90B compliant data.
Note, invoking the in-kernel get_random_bytes API call after the wait_for_random_bytes
API call returns is not considered to be SP800-90B compliant because this call
does not validate whether the SP800-90B startup tests are complete. This func-
tion could be transformed to be SP800-90B compliant by changing the code to
wait for lrng_state_operational instead of lrng_state_min_seeded.

3.5 Reuse of SP800-90B Analysis

To reuse the SP800-90B analysis provided in this document the following steps
must be performed on the target platform:

1. Obtain raw noise data through the raw noise source interface on the in-
tended target platform as explained in section 3.2.3. The obtained raw
noise data must be processed by the SP800-90B tool to obtain an entropy
rate which must be above 1 bit of entropy per time delta.

2. Obtain the restart noise data through the raw noise source interface on
the intended target platform as explained in section 3.2.3. The obtained
raw noise data must be processed by the SP800-90B tool to verify:

(a) the sanity test to apply to the noise restart data must pass, and

(b) the minimum of the row-wise and column-wise entropy rate must not
be less than half of the entropy rate from measurement (1) and the
entropy assessment of the noise source based on the restart data must
be at least 1 bit of entropy per time stamp.

If these steps are successfully mastered the user would now satisfy all SP800-90B
criteria and thus does not need to prepare his own SP800-90B analysis since the
document we discuss here covers all other aspects of the SP800-90B analysis.

3.6 SP800-90C

The specification of SP800-90C as provided in [2] defines construction methods
to design non-deterministic as well as deterministic RNGs. The specification
defines different types of RNGs where the following mapping to the LRNG
applies:

o The output of the /dev/urandom device and the get_random_bytes kernel
function is a DRBG without prediction resistance as allowed in chapter 4
of [2]. The reseed threshold, however, is significantly lower than specified
with SP800-90A in [1]. In addition to a threshold regarding the amount of
generated random data, the DRBG also employs a time-based reseeding
threshold to ensure that the DRBG is reseeded in a reasonable amount of
time.

e The output of the different noise sources maintained by the LRNG are
processed as follows which shows full compliance to section 5.3.4:

— The interrupt noise source, the Jitter RNG and the CPU-based noise
source outputs are all concatenated with a time stamp. This con-
catenated bit stream is the seed data used to seed the DRNG.

58



— Data obtained from architecture-specific noise sources via the add_hwgenerator_randomness
API call is inserted into the entropy pool like the interrupt data.

The requirements of the security of an RNG defined in section 4.1 of [2] are
considered to be covered as follows:

1. The entropy source of the interrupt noise source complies with SP800-90B
[11] as assessed in section 3.2. For the CPU noise sources, no statement
can be made as no access to the design and implementations are given.
The Jitter RNG noise source provides its own self-contained SP800-90B
assessment.

2. The DRBG is designed according to SP800-90A and has received even
FIPS 140-2 certification.

3. The DRBG is instantiated using input from the noise sources.

4. The LRNG is implemented entirely within the Linux kernel which implies
that its entire state is protected from access by untrusted entities.

5. Data fetched from the noise sources always contains data with fresh, yet
unused entropy. It may be possible that the entropy gathered from the
noise sources cannot deliver as many entropic bits as requested.

According to section 5.2 [2], full entropy is defined as a random number gener-
ated by a DRBG that contains entropy of half of the random number size.

The full entropy definition is not applied for seeding the DRBG. This means
that process is described in section 9.4.2 of [2] is not used to seed the DRBG.
Various cryptographers, namely mathematicians from the German BSI, consider
such compression factor as irrelevant. SP800-90C is yet in draft state and many
other random number generators are implemented such that the amount of
entropy injected into the DRBG allows an equal amount of random data to
be extracted and yet consider that this data has full entropy content. If the
SP800-90C full entropy definition shall be enforced, the reseeding operation
of the DRBG in lrng_drng_seed requires calling of the entropy pool’s hash
gathering function twice and assume that the resulting bit string only contains
an entropy content that is half of the data size of the returned random numbers.

As required in chapter 4 [11] and chapter 5 [2], the interrupt noise source
implemented by the LRNG is subject to a health test. This health tests are
documented in section 2.5.4.

Chapter 7 [2] specifies pseudo-code interfaces for the DRBG and NRBG
where the LRNG only implements the “Generate_function”. The “Instanti-
ate_function” is not implemented as the LRNG implements and automatic in-
stantiation. For the DRBG, a “Reseed_ function” is implemented by allowing
user space to write data to /dev/random or using the IOCTL to inject data
into the DRBG as well as add_hwgenerator_randomness. The LRNG also im-
plements the “GetEntropy” logic as defined in section 7.4 [2] where each noise
source is accessed to obtain a bit stream and a value of the assessed entropy.

3.7 AIS 20/ 31

The German BSI defines construction methods of RNGs with AIS 20/31 [5]. In
particular, this document defines different classes of RNGs in chapter 4.

59



The LRNG can be compared to the types of RNGs defined in AIS 20/31 as
follows:

e The per-CPU entropy pools with their hash output function is an NTG.1
which uses the interupt entropy source. Each per-CPU entropy pool has
an entropy estimation associated with it. The generation of the data the
deterministic random number generator instances considers this entropy
estimate by reseeding the DRNG with a buffer holding an entropy amount
equal or larger to the DRNG security strength. The state transition func-
tion ¢ is the hash operation and output function ¢ is the hash function
operated with the chosen hash. When obtaining data from the per-CPU
entropy pools, the LRNG ensures that each generated random number
must be backed by an equal amount of entropy that was mixed into the
per-CPU entropy pool. Hence, the data derived from the per-CPU entropy
pools are backed by information theoretical entropy.

e The blocking output interfaces of the LRNG are a DRG.3. It uses a
DRNG for the state transition function ¢ and output function ¢ to ensure
enhanced backward secrecy which is the prerequisite for a DRG.3. The
following interfaces are DRG.3 compliant:

— /dev/random,

— getrandom system call invoked with a zero flag value,

— invoking the in-kernel get_random_bytes API call when the callback
registered with add_random_ready_callback was invoked,

— invoking the in-kernel get_random_bytes API call after the wait_for_random_bytes
API call returns — note, service functions like the get_random_XXX_wait
API call family where XXX is either u32, u64, int or long fall into
this category.

Any other interface is not considered to provide DRG.3 compliant data.

3.7.1 NTG.1 Compliant Configuration

To due to the non-blocking behavior of the LRNG; it is not considered to operate
as an NTG.1. The code provided with the function generate ntgl is considered
to be very close to an NTG.1. Yet an inherent race-condition does not guarantee
that the caller triggering the reseed will also obtain the first random numbers
from the LRNG. Thus, the solution is not fully and exactly NTG.1 compliant.

4 LRNG Comparison to legacy /dev/random

Tests to compare the LRNG with the legacy /dev/random are conducted to
analyze whether the LRNG brings benefits over the legacy implementation.

4.1 Time Until Fully Initialized

The legacy /dev/random implementation feeds all entropy directly into the
CRNG until the kernel log message is recorded that the CRNG is initialized.

60


https://github.com/smuellerDD/lrng/blob/master/test/syscall_test.c

Only after that point, entropy is fed into the input_pool allowing the seeding
of the blocking_pool and thus generating data for /dev/random.

The LRNG also prints out a message when it is fully seeded. The following
test lists these two kernel log messages including their time stamp.

As mentioned above, the DRNG uses different noise sources where only the
interrupt noise source will always be present. Thus the test is first performed
with all noise sources enabled followed by disabling the fast noise sources of
CPU noise source.

Listing 1: Time until fully initialized -- LRNG using all noise sources

$ dmesg | grep "LRNG minimally seeded"

[ 1.718705] 1lrng_pool: LRNG minimally seeded with 128 bits of entropy

—== 0 SMOX86-64 ~ —m - oo —— oo
$ dmesg | grep "LRNG fully seeded"

[ 2.056685] lrng_pool: LRNG fully seeded with 256 bits of entropy

=== 0 SMOX8B6-64 ~ — - oo oo oo o o
$ dmesg | grep "random: crng init done"

[ 20.932050] random: random: crng init done

The test shows that the DRNG is minimally seeded 1.7 seconds after boot.
This is around the time when the initramfs is started. The DRNG is fully
seeded 2 seconds after boot which is long before systemd injects the legacy
/dev/random seed file into /dev/random and before the initramfs terminates.

The legacy /dev/random’s CRNG on the other hand is initialized with 128
bits of entropy at around 21 seconds after boot in this test round — other tests
show that it may even be initialized after 30 seconds and more. By that time
the complete boot process of the user space is already long completed.

The following test boots the kernel with the kernel command line options of
lrng_archrandom.archrandom=0 and lrng_jent.jitterrng=0 to disable the
fast noise sources.

Listing 2: Time until fully initialized -- LRNG using only interrupt noise source

$ cat /sys/module/lrng_archrandom/parameters/archrandom

0

—== 0 sm@X86-64 ~ ——- - -
$ dmesg | grep "LRNG minimally seeded"

[ 1.683981] 1lrng_pool: LRNG minimally seeded with 128 bits of entropy

=== 0 SmM@X86-64 ~ —m - m oo e ——— o
$ dmesg | grep "LRNG fully seeded"

[ 2.110482] 1lrng_pool: LRNG fully seeded with 256 bits of entropy

=== 0 SMOXBB =64 ~ — === m = o
[ 3.075414] 1lrng_drng: force reseed of DRNG on node 0

Even when the fast noise sources are disabled, the LRNG is minimally and
fully initialized at the time the initramfs started.

During all testing, the LRNG was fully seeded before user space injected
the seed data into /dev/random as mandated by the legacy /dev/random im-
plementation. This point in time is identifiable with the forced reseeding of the
DRNG. The time of user space injecting the seed data into /dev/random marks
the point at which cryptographically relevant user space applications may be
started.

As the DRNG is fully seeded at the time of initramfs, user space daemons

requiring cryptographically strong random numbers are delivered such data.

4.2 Interrupt Handler Performance

The LRNG is invoked from the interrupt handler. Therefore, it is mandatory
that the code executed by the interrupt handler is as fast as possible. To illus-

61



trate the performance, the following measurement is made. The execution time
in CPU cycles is measured on one particular test system. Since the cycle count
is subject to some variations, an average cycle count is calculated.

RNG Options Average
Cycle Count

LRNG with functionality compliant to legacy 42
/dev/random and using 8 LSB of time stamp

LRNG with health tests enabled, but no SP800-90B 78

compliance and using 8 LSB of time stamp
LRNG with SP800-90B compliant health tests 138
Legacy /dev/random implementation 97

Table 1: Average Cycle Count To Process One Interrupt Depending on Enabled
Functionality

The LRNG allows a compile-time option to set the collection size which de-
fines the size of the per-CPU data array. The table above shows the measured
number for the default collection size of 1,024 entries and the use of the accel-
erated AVX2 SHA-512 hash operation. The following graph shows the average
cycle count for processing an interrupt depending on the collection size, the used
hash implementation (either the software SHA-256 provided with the ChaCha20
DRNG or the AVX2 SHA-512 implementation used with the DRBG). Finally,
the graph shows the legacy /dev/random value as reference.

Mean Duration in Cycles for one IRQ

100
L
-—

90

—— Software SHA-256
\ — AVX2 SHA-512
- | Legacy /devirandom

80

70

Mean Duration in Cycles for one IRQ
60
I
!
|

50

40

0 200 400 600 800 1000

LRNG collection size

Figure 4.1: Average Cycle Count To Process One Interrupt Depending on Col-
lection Size

The graph shows that when using an accelerated hash implementation, the
average cycle count decreases. When increasing the collection size, the aver-

62



age cycle count increases as well. Finally, the graph shows that the default
collection size shows about the same performance as the legacy /dev/random.
The question must be raised, why not use the largest supported collection size
as default? The reason is the goal that the LRNG shall deliver entropy fast
during boot time. The collected entropy is only available to the LRNG when
it is injected into the per-CPU entropy pool. The injection occurs only when
the per-CPU data array is completely filled. When the data array is large, it
takes longer before the entropy is available to the LRNG to seed the DRNG.
Thus, the default collection size is chosen to show a performance en-par with
the legacy /dev/random which also ensures a fast entropy collection during boot
time. Yet, a user can select a different size during compile time as needed.

Note, the interrupt handler performance can be even more increased by dis-
abling the continuous compression support. By either setting CONFIG_LRNG_CONTINUQUS_COMPRESSION_DISAE
to hard-code disabling the continuous compression support or by configuring
CONFIG_LRNG_SWITCHABLE_CONTINUOUS_COMPRESSION and to disable it at boot-
time, the hash operation during the interrupt handling can be disabled. This
implies that the occasional hash operation in the interrupt handler is not exe-
cuted implying that the interrupt handler of the LRNG only concatenates the
received data into an array improving the performance even further.

4.3 LRNG Output Performance And DRNG Type

As documented above, the LRNG is capable of using all types of DRNG provided
by the Linux kernel. On the test system that executes within a KVM and on
top of an Intel Core i7 Whiskey Lake. CPU?°, the following read speeds using
the getrandom system call are obtained with different read sizes indicated in the
following tables. These numbers give an indication on how much one DRNG
performs better over another?! and are presented in table 2. This table lists
the DRNG type, the type and implementation of the underlying cipher and the
performance in MBytes per second. Please note that the read sizes have been
chosen as follows: The small read sizes are based on the buffer size of the used
DRNG and do not require a kmalloc call in the lrng_read_common function.
The other values shall indicate the performance when using higher block sizes
up to the point the maximum request size is reached.

20This CPU offers AES-NI, and AVX2 that is used by the allocated AES and SHA imple-
mentations.

21Please note that the test system is a 64-bit system. On 64-bit systems, SHA-512 is faster
by a factor of almost 2 compared to SHA-256 when the output data size is segmented into 64
bytes — the SHA-512 block size.

63



’ DRNG Type \ Cipher \ Cipher Impl. \ Read Size \ Performance ‘
HMAC DRBG SHA-512 C 64 bytes 13.8 MB/s
HMAC DRBG SHA-512 AVX2 16 bytes 4.7 MB/s
HMAC DRBG SHA-512 AVX2 32 bytes 11.6 MB/s
HMAC DRBG SHA-512 AVX2 64 bytes 23.3 MB/s
HMAC DRBG SHA-512 AVX2 128 bytes 38.3 MB/s
HMAC DRBG SHA-512 AVX2 4096 bytes | 92.1 MB/s

Hash DRBG SHA-512 C 64 bytes 27.9 MB/s
Hash DRBG SHA-512 AVX2 16 bytes 13.1 MB/s
Hash DRBG SHA-512 AVX2 32 bytes 25.9 MB/s
Hash DRBG SHA-512 AVX2 64 bytes 51.1 MB/s
Hash DRBG SHA-512 AVX2 128 bytes 83.3 MB/s
Hash DRBG SHA-512 AVX2 4096 bytes | 217.8 MB/s
CTR DRBG AES-256 C 16 bytes 15.4 MB/s
CTR DRBG AES-256 AES-NI 16 bytes 24.4 MB/s
CTR DRBG AES-256 AES-NI 32 bytes 49.3 MB/s
CTR DRBG AES-256 AES-NI 64 bytes 96.2 MB/s
CTR DRBG AES-256 AES-NI 128 bytes 177.1 MB/s
CTR DRBG AES-256 AES-NI 4096 bytes | 1.247 GB/s
ChaCha20 ChaCha20 C 16 bytes 42.0 MB/s
ChaCha20 ChaCha20 C 32 bytes 84.5 MB/s
ChaCha20 ChaCha20 C 64 bytes 131.0 MB/s
ChaCha20 ChaCha20 C 128 bytes | 194.7 MB/s
ChaCha20 ChaCha20 C 4096 bytes | 550.3 MB/s
Legacy /dev/random SHA-1 C 10 bytes 12.9 MB/s
Legacy /dev/random | ChaCha20 C 16 bytes 29.2 MB/s
Legacy /dev/random | ChaCha20 C 32 bytes 58.6 MB/s
Legacy /dev/random | ChaCha20 C 64 bytes 80.0 MB/s
Legacy /dev/random | ChaCha20 C 128 bytes | 118.7 MB/s
Legacy /dev/random | ChaCha20 C 4096 bytes | 220.2 MB/s

Table 2: LRNG performance on 64-bit

In addition, table 3 documents the performance on 32 bit using the same
Note, the CTR DRBG
performance for large blocks can be increased to more than 2 GB/s when
DRBG_CTR_NULL_LEN and DRBG_OUTSCRATCHLEN in crypto/drbg.c is increased

hardware to have a comparison to the 64-bit case.

to 4096.

64




’ DRNG Type \ Cipher \ Cipher Impl. \ Read Size \ Performance ‘
HMAC DRBG SHA-512 C 16 bytes 1.4 MB/s
HMAC DRBG SHA-512 C 32 bytes 2.1 MB/s
HMAC DRBG SHA-512 C 64 bytes 5.5 MB/s
HMAC DRBG SHA-512 C 128 bytes 9.0 MB/s
HMAC DRBG SHA-512 C 4096 bytes | 22.8 MB/s

Hash DRBG SHA-512 C 16 bytes 3.6 MB/s
Hash DRBG SHA-512 C 32 bytes 7.2 MB/s
Hash DRBG SHA-512 C 64 bytes 14.5 MB/s
Hash DRBG SHA-512 C 128 bytes 22.5 MB/s
Hash DRBG SHA-512 C 4096 bytes | 46.3 MB/s
CTR DRBG AES-256 AES-NI 16 bytes 10.3 MB/s
CTR DRBG AES-256 AES-NI 32 bytes 22.7 MB/s
CTR DRBG AES-256 AES-NI 64 bytes 45.5 MB/s
CTR DRBG AES-256 AES-NI 128 bytes 84.2 MB/s
CTR DRBG AES-256 AES-NI 4096 bytes | 397.4 MB/s
ChaCha20 ChaCha20 C 16 bytes 18.8 MB/s
ChaCha20 ChaCha20 C 32 bytes 38.0 MB/s
ChaCha20 ChaCha20 C 64 bytes 61.9 MB/s
ChaCha20 ChaCha20 C 128 bytes | 102.5 MB/s
ChaCha20 ChaCha20 C 4096 bytes | 346.5 MB/s
Legacy /dev/random SHA-1 C 10 bytes 9.4 MB/s
Legacy /dev/random | ChaCha20 C 16 bytes 16.8 MB/s
Legacy /dev/random | ChaCha20 C 32 bytes 32.9 MB/s
Legacy /dev/random | ChaCha20 C 64 bytes 43.3 MB/s
Legacy /dev/random | ChaCha20 C 128 bytes | 61.7 MB/s
Legacy /dev/random | ChaCha20 C 4096 bytes | 153.2 MB/s

Table 3: LRNG performance on 32 bit

Note, to enable the different cipher implementations, they need to be stati-
cally linked into the kernel binary.
To ensure that the respective implementations of the cipher cores are used,

they must be statically linked into the kernel.

The reason for the fast processing of larger read requests lies in the concept
of the DRBG: the DRBG generates the requested number of bytes followed by
an update operation which generates a new internal state. Thus, the larger
the generate requests are, the less number of state update operations are per-
formed relative to the data size. The LRNG enforces that at most 2'2 bytes are
generated before an update is enforced as documented in section 2.9.1.

4.4 ChaCha20 Random Number Generator
The ChaCha20 DRNG is analyzed to verify the following properties:

o whether the self-feeding RNG ensures backtracking resistance, and

e whether the absence of the CPU noise source still produces white noise.

The compilation of the LRNG code is changed such that the ChaCha20 DRNG is
compiled. Also, for testing, the fast noise sources have been disabled to clearly

65



demonstrate that the backtracking resistance is ensured. This is followed by
obtaining random numbers from /dev/urandom and calculating the statistical
properties:

Listing 3: Statistical properties of ChaCha20 RNG with interrupt noise source

=== 0 SmOX86-64 ~ —— - - - mmm e m e ————— -
$ dd if=/dev/urandom of=file count=1000

1000+0 Datensédtze ein

1000+0 Datensédtze aus

512000 bytes (512 kB, 500 KiB) copied, 0,00341658 s, 150 MB/s

=== 0 SmOX86-64 ~ —— - - — - mmm e m e ——— -
$ ent file

Entropy = 7.999639 bits per byte.

Optimum compression would reduce the size
of this 512000 byte file by O percent.

Chi square distribution for 512000 samples is 257.07, and randomly
would exceed this value 45.19 percent of the times.

Arithmetic mean value of data bytes is 127.4761 (127.5 = random).

Monte Carlo value for Pi is 3.147902921 (error 0.20 percent).

Serial correlation coefficient is 0.001163 (totally uncorrelated = 0.0).

--— 0 sm@x86-64 ~ ——------- - - - T oo — T oo
$ ent -b file

Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 4096000 bit file by O percent.

Chi square distribution for 4096000 samples is 0.12, and randomly
would exceed this value 73.24 percent of the times.

Arithmetic mean value of data bits is 0.5001 (0.5 = random).
Monte Carlo value for Pi is 3.147902921 (error 0.20 percent).
Serial correlation coefficient is 0.000028 (totally uncorrelated = 0.0).

The Chi-Square result indicates white noise and thus allows the conclusion
that the ChaCha20 DRNG operates as expected and that backtracking resis-
tance is implemented correctly.

A fully stand-alone user-space implementation of the ChaCha20 DRNG is
provided at the ChaCha20 DRNG website. This implementation is an extraction
of the ChaCha20-based DRNG used for the LRNG and is provided to allow
studying the ChaCha20-based DRNG without the limitation of kernel space.

4.5 Legacy /dev/random Non-Compliance with SP800-
90B

In addition to the general concerns regarding the design and implementation of
the legacy /dev/random and their coverage in the LRNG given in [8] section
4.4, the following list enumerates the areas of non-compliance of the legacy
/dev/random with SP800-90B. As this document does not claim to provide an
SP800-90B entropy analysis of the legacy /dev/random, it is possible that more
areas of non-compliance are identified.

The legacy /dev/random implementation does not contain a repetitive count
test (RCT) and adaptive proportion test (APT) or a suitable alternative as
mandated in [11] sections 4.4 and 4.5. This includes neither a start-up health
test nor a run-time health test.

As mandated in [11] section 3.1.6, multiple noise sources are allowed but
only one noise source is to be credited with entropy. In particular the second
paragraph prohibits the crediting of entropy to closely related noise sources.

66


http://www.chronox.de/chacha20_drng.html

The legacy /dev/random credits entropy to HID and block device events and
at the same time interrupt events. However, each HID and block device event
will always show up as an interrupt event as well considering that each HID and
block device is interacted with using interrupts. Thus, HID and block device
events are derivatives of interrupt events with respect to their entropy. Such
double counting of entropy events are prohibited by [11] section 3.1.6.

When using multiple noise sources such as add_disk_randomness, add_input_randomness
or add_interrupt_randomness, [11] section 3.1.6 requires the use of a vetted
conditioning component. However, the legacy /dev/random does not use any
vetted conditioning component.

To comply with SP800-90B, [11] section 3.1.5 requires an estimation of the
entropy behavior of the conditioning components. Such estimation is considered
to be a challenge to obtain due to the following different conditioning compo-
nents implemented by the legacy /dev/random and applied to data believed to
contain entropy:

e Some form of LSFR is implemented in the function crng_slow_load.

e The LFSR applied to the fast_ pool state with 4 words when injecting new
data must be assessed.

e The LFSR used for the input_ pool must be assessed.

e The conditioning component provided with the SHA-1 operation reading
the input_ pool whose output is folded in half must be assessed. This
operation is almost a vetted conditioning component compliant to [11]
section 3.1.5.1.1 with the exception that the output of the SHA-1 operation
is folded in half. Although this document does not contain any analysis
of the legacy conditioning components, the reader is reminded of table 1
of [11] section 3.1.5.1.1 which outlines the narrowest internal width of a
vetted conditioning component. For the hash operation it is marked as the
hash-function output size. Considering that the used operation is almost
a vetted conditioning component where only the output size is 80 bits due
to the folding operation, a careful analysis must be applied whether the
SHA-1 operation and its output-folding operation only delivers 80 bits of
output length as listed in table 1. If this is the case, it is very likely that
the legacy /dev/random entropy rate is limited to 80 bits of entropy due
to this operation. It is also to be noted that the SHA-1 operation does
not comply to the specification, such as that it does not use the correct
initialization vector and it does not perform the finalization operation
including the padding specified in section 5.1.1 [10].

e The ChaCha20 DRNG used to provide random numbers via the output
interfaces must be assessed as well.

Starting with kernel 5.8, a patch is added to the legacy /dev/random which
reads one 32-bit word straight from one fast_pool and injects that data into
the external random32 random number generator every time an interrupt is
received. Yet, the legacy /dev/random uses that same data to update its in-
put_ pool with that data. The external random32 random number generator is
a non-cryptographic RNG using its data for network related operations where
the generated random numbers are visible to external entities. It is unclear

67



how much entropy is lost due to this operation. Yet, the fact that data that
is believed to hold entropy is extracted from the legacy /dev/random while be-
ing processed and at the same time being credited with entropy by the legacy
/dev/random is considered to violate basic fundamental design requirements in
[11] section 2.2.

A Thanks

Special thanks for providing input as well as mathematical support goes to:
e DJ Johnston
e Yi Mao
e Sandy Harris
e Dr. Matthias Peter

e Quentin Gouchet

B Source Code Availability

The source code, this document as well as the test code for all aforementioned
tests is available at http://www.chronox.de/lrng.html.

C SP800-90B Entropy Measurements

The following table presents the SP800-90B entropy measurements indicating
whether the found entropy is sufficiently high to support the entropy analysis
given in section 3.2.5. Entropy values are given in bits and apply to the entropy
found in one time stamp generated when receiving an interrupt event. The
testing shown in this section provides the quantiative foundation of the entropy
analysis compliant to sections 3.2.6 as well as all other assessments required for
SP800-90B.

The testing collected raw unconditioned time stamps as delivered by the
file /sys/kernel/debug/lrng_testing/lrng raw_hires. The entropy calcu-
lation is based on 1,000,000 raw time stamps collected by the LRNG. To speed
up the raw time stamp collection as well as to obtain a worst-case assessment,
all test systems were either ping-flooded or within an SSH-session a find / was
executed to generate a large number of interrupts in a short amount of time.
The ping-flood generator was in close network proximity (e.g. KVM host, or a
system at most one switch away from the test system).

The entropy result listing in the table below is generated as follows. The
time stamps generated by the LRNG for each interrupt event is extracted and
concatenated to form a bit-stream. This bit stream is processed by the NIST
SP800-90B entropy analysis tool to obtain an entropy rate. This entropy rate
is listed below. As the 8 least significant bits (LSB) of the time stamp are used
and the other bits are ignored by the LRNG, the entropy rate applies to those
8 data bits. As discussed in sections 3.2.6, the LRNG assumes that each time
stamp provides at least slightly more than one bit of entropy. As all values

68


http://www.chronox.de/lrng.html
https://github.com/usnistgov/SP800-90B_EntropyAssessment/
https://github.com/usnistgov/SP800-90B_EntropyAssessment/

in the table below show significantly more entropy even with the worst-case
measurement of 8 LSB, the LRNG underestimates the entropy existing in the
respective system. Thus, the LRNG is considered to operate securely on these
systems. The test complies with SP800-90B outlined in section 3.2.3.

Test System Entropy of Sufficient
1,000,000 Traces Entropy

ARMvT rev 5 1.9344 Y

ARMv7 rev 5 7.07088 Y
(Freescale i.MX53)22

ARM 64 bit AppliedMicro X-Gene 5.599128 Y

Mustang Board
Intel Atom Z530 — using GUI 3.38584 Y
Intel i7 7500U Skylake - 64-bit KVM 3.452064 Y
environment

Intel i7 8565U Whiskey Lake — 64-bit 7.400136 Y
KVM environment

Intel i7 8565U Whiskey Lake — 32-bit 7.405704 Y
KVM environment

Intel i7 8565U Whiskey Lake 6.871 Y

Intel Xeon Gold 6234 4.434168 Y

IBM POWER 8 LE 8286-42A 6.830712 Y

IBM POWER 7 BE 8202-E4C 4.233912 Y

IBM System Z z13 (machine 2964) 4.366368 Y

IBM System Z z15 (machine 8561) 5.691832 Y

MIPS Atheros AR7241 rev 123 7.157064 Y

Table 5: LRNG Entropy Testing Results on Different Hardware

Some of the tested systems are quite old or are small embedded devices
demonstrating that even on older and smaller systems the LRNG does not
overestimate the available entropy when applying worst case conditions.

I am looking for test data from all kinds of systems. The less common a
system is the more I am interested in the data to verify that the basic entropy
estimate underlying the LRNG is correct. If you want to provide support, please
generate data using the LRNG test tool set specifically the test as documented
in sp80090b/recording/raw_entropy/README.md.

D Auxiliary Testing

In addition to the testing conducted in appendix C, the following tests were
executed on all systems.

Stress testing (provided with the swap_stress.sh test script): A continu-
ous read operation on /dev/urandom is started with as many parallel threads
as CPUs, one continuous read operation on /dev/random is started, and one

22USBArmory MK 1
23Ubiquiti Nanostation M5 (xm)

69


https://www.chronox.de/lrng.html

continuous read operation on /proc/lrng type is started. While the read oper-
ations are performed, 5,000 insmod / rmmod operations of the lrng_drbg.ko
kernel module is performed to change the DRNG type and the read hash of
the entropy pool. A test that runs to completion shows that the locking of the
LRNG does not show deadlocks or unprotected critical code paths.

Performance testing (provided with 1lrng_get_speed.sh and speedtest.c
test code): The performance of the legacy /dev/random as well as the LRNG
for its ChaCha20 and all SP800-90A DRBG types is recorded. The LRNG
ChaCha20 DRNG is commonly significantly faster compared to the legacy DRNG.
The performance of the different DRBGs depends on the availability of accel-
erated cryptographic support. If such support is present, the DRBG may reach
the ChaCha20 performance and the CTR DRBG for larger block sizes it may
greatly exceed the ChaCha20 performance.

The self tests implemented when enabling CONFIG_LRNG_SELFTEST are veri-
fied to run successfully.

The boot process was analyzed to verify that the LRNG is fully seeded on
all systems around the time when the hard disks are mounted by the boot
environment. This implies that a fully seeded LRNG is available at the time
cryptographic user space services such as OpenSSH are started.

E Bibliographic Reference

References

[1] Elaine Barker and John Kelsey. NIST Special Publication 800-90A Recom-
mendation for Random Number Generation using Deterministic Random
Bit Generators. Revision 1 edition, 2015.

[2] Elaine Barker and John Kelsey. (Second Draft) Special Publication 800-90C
Recommendation for Random Bit Generatior (RBG) Constructions. 2016.

[3] Elaine Barker and Allen Roginsky. NIST DRAFT Special Publication 800-
181A Rewvision 1 Transitions: Recommendation for Transitioning the Use
of Cryptographic Algorithms and Key Lengths. 2015.

[4] BSIL. BSI - Technische Richtline TR-02102-1. 2016.

[5] Wolfgang Killmann and Werner Schindler. AIS 20/31: A proposal for:
Functionality classes for random number generators. 2011.

[6] Stephan Miiller. /dev/random and sp800-90b. International Cyptographic
Module Conference (ICMC), 2015.

[7] Stephan Miiller. Analysis of Random Number Generation in Virtual Envi-
ronments. 2016.

[8] Stephan Miiller. Documentation and Analysis of the Linuz Random Number
Generator. 4.1 edition, 2020.

[9] Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF Protocols.
RFC 7539 (Informational), May 2015. URL http://www.ietf.org/rfc/
rfc7539.txt.

70


http://www.ietf.org/rfc/rfc7539.txt
http://www.ietf.org/rfc/rfc7539.txt

[10] NIST. FIPS PUB 180-4 Secure Hash Standard (SHS). 2011.

[11] Meltem Sonmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay,
Mary L. Baish, and Mike Boyle. NIST Special Publication 800-90B Rec-
ommendation for the Entropy Sources Uses for Random Bit Generation.
2018.

F License

The implementation of the Linux Random Number Generator, all support mech-
anisms, the test cases and the documentation are subject to the following license.
Copyright Stephan Miller <smueller@chronox.de>, 2016 - 2020.
Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
and the entire permission notice in its entirety, including the disclaimer of
warranties.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

ALTERNATIVELY, this product may be distributed under the terms of the
GNU General Public License, in which case the provisions of the GPL are re-
quired INSTEAD OF the above restrictions. (This clause is necessary due to a
potential bad interaction between the GPL and the restrictions contained in a
BSD-style copyright.)

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ALL OF WHICH ARE HEREBY DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF NOT
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

G Change Log

71



Date \ Change
2021-02-02 Fix typo in section 2.8 - suggested by Lee Ball
2021-02-07 Add support to make continuous compression operation

configurable

72




	1 Introduction
	1.1 Linux /dev/random Status Quo
	1.2 A New Approach
	1.3 Advantages Introduced by LRNG
	1.4 Document Structure

	2 LRNG Design
	2.1 LRNG Components
	2.2 LRNG Data Processing
	2.3 LRNG Architecture
	2.3.1 Minimally Versus Fully Seeded Level
	2.3.2 Seeding Examples
	2.3.3 NUMA Systems
	2.3.4 Flexible Design
	2.3.5 Covered Design Concerns of Legacy /dev/random

	2.4 LRNG Data Structures
	2.5 Interrupt Processing
	2.5.1 Entropy Amount of Interrupts
	2.5.2 Entropy of CPU Noise Source
	2.5.3 Entropy of CPU Jitter RNG Noise Source
	2.5.4 Health Tests

	2.6 HID Event Processing
	2.7 DRNG Seeding Operation
	2.8 LRNG-external Noise Sources
	2.8.1 Kernel Hardware Random Number Generator Drivers
	2.8.2 Injecting Data From User Space
	2.8.3 Auxiliary Pool

	2.9 DRBG
	2.9.1 /dev/urandom and get_random_bytes_full
	2.9.2 /dev/random

	2.10 ChaCha20 DRNG
	2.10.1 State Update Function
	2.10.2 Seeding Operation
	2.10.3 Generate Operation

	2.11 PRNG Registered with Linux Kernel Crypto API
	2.12 get_random_bytes in Atomic Contexts
	2.13 LRNG External Interfaces
	2.14 LRNG Self-Tests
	2.15 LRNG Test Interfaces

	3 Standards Compliance
	3.1 FIPS 140-2 Compliance
	3.1.1 FIPS 140-2 IG 7.18 Requirement For Statistical Testing
	3.1.2 FIPS 140-2 IG 7.18 Heuristic Analysis
	3.1.3 FIPS 140-2 IG 7.18 Additional Comment 1
	3.1.4 FIPS 140-2 IG 7.18 Additional Comment 2
	3.1.5 FIPS 140-2 IG 7.18 Additional Comment 3
	3.1.6 FIPS 140-2 IG 7.18 Additional Comment 4
	3.1.7 FIPS 140-2 IG 7.18 Additional Comment 6
	3.1.8 FIPS 140-2 IG 7.18 Additional Comment 9

	3.2 SP800-90B Compliance
	3.2.1 SP800-90B Section 3.1.1
	3.2.2 SP800-90B Section 3.1.2
	3.2.3 SP800-90B Section 3.1.3
	3.2.4 SP800-90B Section 3.1.4
	3.2.5 SP800-90B Section 3.1.5
	3.2.6 SP800-90B Section 3.1.5.1
	3.2.7 SP800-90B Section 3.1.6
	3.2.8 SP800-90B Section 3.2.1 Requirement 1
	3.2.9 SP800-90B Section 3.2.1 Requirement 2
	3.2.10 SP800-90B Section 3.2.1 Requirement 3
	3.2.11 SP800-90B Section 3.2.1 Requirement 4
	3.2.12 SP800-90B Section 3.2.1 Requirement 5
	3.2.13 SP800-90B Section 3.2.1 Requirement 6
	3.2.14 SP800-90B Section 3.2.1 Requirement 7
	3.2.15 SP800-90B Section 3.2.2 Requirement 1
	3.2.16 SP800-90B Section 3.2.2 Requirement 2
	3.2.17 SP800-90B Section 3.2.2 Requirement 3
	3.2.18 SP800-90B Section 3.2.2 Requirement 4
	3.2.19 SP800-90B Section 3.2.2 Requirement 5
	3.2.20 SP800-90B Section 3.2.2 Requirement 6
	3.2.21 SP800-90B Section 3.2.2 Requirement 7
	3.2.22 SP800-90B Section 3.2.3 Requirement 1
	3.2.23 SP800-90B Section 3.2.3 Requirement 2
	3.2.24 SP800-90B Section 3.2.3 Requirement 3
	3.2.25 SP800-90B Section 3.2.3 Requirement 4
	3.2.26 SP800-90B Section 3.2.3 Requirement 5
	3.2.27 SP800-90B Section 3.2.4 Requirement 1
	3.2.28 SP800-90B Section 3.2.4 Requirement 2
	3.2.29 SP800-90B Section 3.2.4 Requirement 3
	3.2.30 SP800-90B Section 3.2.4 Requirement 4
	3.2.31 SP800-90B Section 3.2.4 Requirement 5
	3.2.32 SP800-90B Section 3.2.4 Requirement 6
	3.2.33 SP800-90B Section 3.2.4 Requirement 7
	3.2.34 SP800-90B Section 4.3 Requirement 1
	3.2.35 SP800-90B Section 4.3 Requirement 2
	3.2.36 SP800-90B Section 4.3 Requirement 3
	3.2.37 SP800-90B Section 4.3 Requirement 4
	3.2.38 SP800-90B Section 4.3 Requirement 5
	3.2.39 SP800-90B Section 4.3 Requirement 6
	3.2.40 SP800-90B Section 4.3 Requirement 7
	3.2.41 SP800-90B Section 4.3 Requirement 8
	3.2.42 SP800-90B Section 4.3 Requirement 9
	3.2.43 SP800-90B Section 4.4

	3.3 NIST Clarification Requests
	3.3.1 Sensitivity of Interrupt Timing Measurements
	3.3.2 Dependency Between Interrupt Timing Measurements

	3.4 SP800-90B Compliant Configuration
	3.5 Reuse of SP800-90B Analysis
	3.6 SP800-90C
	3.7 AIS 20 / 31
	3.7.1 NTG.1 Compliant Configuration


	4 LRNG Comparison to legacy /dev/random
	4.1 Time Until Fully Initialized
	4.2 Interrupt Handler Performance
	4.3 LRNG Output Performance And DRNG Type
	4.4 ChaCha20 Random Number Generator
	4.5 Legacy /dev/random Non-Compliance with SP800-90B

	A Thanks
	B Source Code Availability
	C SP800-90B Entropy Measurements
	D Auxiliary Testing
	E Bibliographic Reference
	F License
	G Change Log

