Linux /dev/random
A New Approach

Stephan Muller
<smueller@chronox.de>

Agenda

* LRNG Goals
* LRNG Design
* |nitial Seeding Strategies

* Entropy Sources

e
LRNG Goals

* Sole use of cryptography for data processing

pecific DRNG seeding strategies --->
I ntropy Source Configuration --->
* High-Performance lockless IRQ handler (] “upport DRNG runtime switching -.->
I i [*] RNG testing interfaces --->
* Test interfaces for all LRNG processing steps e e
o Pgwer_up and runtime tests [] anic the kernel upon self-test failure
* Compile-time enabling of API and ABI compliant drop-in replacement of existing

/dev/random
* Flexible configuration supporting wide range of use cases
* Runtime selection of cryptographic implementations

* Clean architecture — all permutations of options of the LRNG always lead to a secure
random bit generation

* Standards compliance: SP800-90A/B/C, AIS 20/31, FIPS IG 7.19 / D.K (use of DRBG
as conditioner)

L RNG Design

6 Entropy Sources

All ES can be selectively disabled A\.

DRNG

(Re)Seeding

User Space
Writes
I0CTL

4 external 000 e

2 Internal |Schedu|erES| IRQ ES | CPUES | CPU Jitter ES Aux Pool ES [Time|
All ES treated equally E i !

No domination by any ES —
seeding triggered by boot process m |m

PU Jitter
ES

Or D R G Hash Hash

at complle time 1111111 1111111
ES data fed into DRNG
DRNG accessible with APIs

S———

*

111111 S 111111111101 S 11111

ntropy Estim.
°S$fi“e'e’ 'Ro Evssr;;t
Health Test

-
DRNG Output APIs

Blocking APIs — deliver data only after fully initialized and fully seeded
- Irng_get_random_bytes_full in-kernel API
- When /dev/irandom compliant API enabled:
* /dev/random
* getrandom() system call
« get_random_bytes in-kernel API after being triggered with add_random_ready_callback or after rng_is_initialized returns true
« Prediction Resistance API — deliver data only after fully initialized and successful reseed returning at
most data equal to the amount of entropy

- Separate D(Ij?NG instance operating with prediction resistance generating at most as much data as seed entropy
was inserte

- Using /dev/random with O_SYNC
- Using getrandom(2) with flag GRND_RANDOM

- Compliant with:
* FIPSIG 7.19/D.K to use DRBG as conditioning component for seeding other DRBGs
*« German AlS 20/31 (2011, 2024) NTG.1 requirements

 Get seed: getrandom(2) with flag GRND_SEED to obtain data from entropy sources directly

« All other APIs deliver data without blocking until complete initialization
- No guarantee of LRNG being fully initialized / seeded

—
DRNG Seeding

* Temporary seed buffer: concatenation of output from all ES
* Seeding during boot: when 32/128/256 bits of entropy are available

[d lrng_es 1|q 256 interrupts used from entropy pool of CPU 17, O interrupts remain unused
See Ing at ru ntlme lrng_ rg: O interrupts used from entropy pool of CPU 18, 256 interrupts remain unused
lrng_ rg: @ interrupts used from entropy pool of CPU 19, 256 interrupts remain unused
After 220 generate requeStS or 10 lrng_ : obtained 256 bits by collecting 256 bits of entropy from entropy pool noise source
mlnutes lrng_ rchrandom: obtained 256 bits of entropy from CPU RNG noise source
lrng_ ent: obtained 16 bits of entropy from Jitter RNG noise source
- After forced reseed by user Space 5 lrng_es_aux: obtained 256 bits by collecting 256 bits of entropy from aux pool, @ bits of entropy remaining

- After new DRNG is loaded

- Atleast 128 bits (SP800-90C mode: LRNG security strength) of total entropy must be available

- 256 bits of entropy requested from each ES — ES may deliver less

- Seed operation occurs when DRNG is requested to produce random bits

- DRNG returns to not fully seeded when last seed with full entropy was > 23 generate operations ago
- Pictures shows regular and SP800-90C initial seeding behavior

0] lrng_es 1|q 256 interrupts used from entropy pool of CPU 17, @ interrupts remain unused
lrng_es_irqg: 192 interrupts used from entropy pool of CPU 18, 64 interrupts remain unused
lrng_es_irq: 0 interrupts used from entropy pool of CPU 19, 256 interrupts remain unused
lrng_es_. : obtained 384 bits by collecting 448 bits of entropy from entropy pool noise source
1rng_es_archrandom: obtained 384 bits of entropy from CPU RNG noise source
lrng_es_jent: obtained 24 bits of entropy from Jitter RNG noise source

5.015887] lrng_es_aux: obhtained 192 bits by collecting 256 bits of entropy from aux pool, @ bits of entropy remaining

-
Initial Seeding Strategy |
Default Operation

DRNG is initially seeded with at least 32 bits of entropy
* DRNG is minimally seeded with at least 128 bits of entropy
* DRNG is fully seeded with 256 bits of entropy

* Blocking interfaces released after DRNG is fully seeded
— Forced seeding with available entropy to achieve fully seeded level
* Default applied

— Either no specific seeding strategy compiled [1 /IS 20/31 NTG.1 seeding strategy
— Or specific seeding strategy is not enabled at boottime

Initial Seeding Strategy I
Entropy Source Oversampling

Initial / minimal seeding steps apply — fully
seeded step changed

« Compile time option
- Function only enabled in FIPS mode

Function only enabled if message digest of conditioner >=
384 bits

« Final conditioning: s + 64 bit

. Initial DRNG seeding: every entropy source requested for
s + 128 hits

_ Every ES alone could provide all required entropy
« All ES data concatenated into seed buffer
 Runtime debug mode: display of all processing steps
« SP800-90C compliance:

- SP800-90A DRBG with 256-bit strength / SHA-512 vetted
conditioning component

- Complies with RBG2(NP) per default
_ Can be configured to provide RBG2(P)

« Can be used in parallel with seeding strategy Il

CONFIG_LRNG_OVERSAMPLE_ENTROPY_SOURCES:

When enabling this option, the entropy sources are
over-sampled with the following approach: First, the

the entropy sources are requested to provide 64 bits more
entropy than the size of the entropy buffer. For example,
if the entropy buffer is 256 bits, 320 bits of entropy

is requested to fill that buffer.

Second, the seed operation of the deterministic RNG
requests 128 bits more data from each entropy source than
the security strength of the DRNG during initialization.

A prerequisite for this operation is that the digest size
of the used hash must be at least equally large to generate
that buffer. If the prerequisite is not met, this
oversampling is not applied.

This strategy is intended to offset the asymptotic entropy
increase to reach full entropy in a buffer.

The strategy is consistent with the requirements in
NIST SP800-90C.

—
Initial Seeding Strategy Il

Two Entropy Sources

Initial / minimal seeding steps apply unaltered — fully CONFIG_LRNG_AIS2031 NTG1_SEEDING_STRATEGY:

seeded step changed _ _ _
When enabling this option, two entropy sources must

y Comp”e time Opthﬂ deliver 220 bits of entropy each to consider a DRNG
- Function only enabled with Irng_es_mgr.ntgl=1 as fully seeded. Any two entropy sources can be used
. | G di to fulfill this requirement. If specific entropy sources
Initial DRNG see INg: two entropy sources shall not be capable of contributing to this seeding
must deliver 240 bits of entropy each strategy, the respective entropy source must be configured
» All ES data concatenated into seed buffer to provide less than 220 bits of entropy.
° Runtlme debug mode: dlsplay of all The strategy is consistent with the requirements for
processmg steps NTG.1 compliance in German AIS 20/31 and is only enforced
« German AIS 20/31 compliance with lrng_pool.ntgl=l.

- Caveat: Applies to AIS20/31 v3.0
- NTG.1: LRNG configuration ensures two entropy sources can reach at least 240 bits each
- PTG.3/DRG.4: LRNG can be configured to provide a PTG.3 or DRG.4

« Can be used in parallel with seeding strategy |l

 German AIS 20/31 compliance (2011): access /dev/random with O_SYNC or getrandom(2) with
GRND_RANDOM

DRNG Man agement B e e

* One DRNG per NUMA node o J‘ X J‘ - l
* Hash contexts NUMA-node local

* Each DRNG initializes from entropy sources
* Sequential initialization of DRNG — first is Node O

* If DRNG on one NUMA node is not yet fully seeded - use of DRNG(Node 0)
* Each DRNG instance managed independently

* To prevent reseed storm — reseed threshold different for each node
- Node 0: 600 seconds
- Node 1: 700 seconds

* NUMA support code only compiled if CONFIG_NUMA - only one DRNG present

-
Data Processing Primitives

. Sole use of cryptographic mechanisms for data
compression

. Cryptographic primitives Boot-Time / Runtime switchable <M= P800-90A support for the LRNG
- Switching support is compile-time option <M= ernel Crypto API support for the LRNG
- DRNG’ Condltlonlng haSh One invocation of lrng_cc20_generate_helper
- Built-in: ChaCha20 DRNG / SHA-256 ~ " ~
- Avallable. chacha20_ lrng cc20_ ChaCha20 ChaCha20 ChaCha20 ChaCha20
* SP800-90A DRBG %CTR/Ha_sh/.HMAC) using accelerated AES / SHA primitive,] T rased o) R)
accelerated SHA-512 conditioning hash constant | | Expand JExpand i JExpand
constant 32-byte k* 32-byte k* 32-byte k* —
* Hardware DRNG may be used (e.g. CPACF) constant
key
. Well-defined API to allow other cryptographic primitive implementations key g 3 g
ey E 3 2
* Complete cryptographic primitive testing available tg 0 8 8 8
- Full ACVP test harness available: https://github.com/smuellerDD/acvpparser tz}vl g § é
- ChaCha20 DRNG userspace implementation: < = — -
https://github.com/smuellerDD/chacha20_drng o — f(”n’;::’:r -
y Other data processing primitives eL ° B -
- Concatenation of data | e
- Truncation of message digest to heuristic entropy value Output Bufferl i
. Entropy behavior of all data processing primitives based on fully understood and uncontended operations

https://github.com/smuellerDD/acvpparser
https://github.com/smuellerDD/chacha20_drng

-
External Entropy Sources

Use without additional conditioning — fast source

Jitter RNG with asynchronous operation
Kernel RNG (mutually exclusive with internal IRQ ES)

*#%% Jitter RNG Entropy Source ***
[*] "nable Jitter RNG as LRNG Seed Source
(16) itter RNG Entropy Source Entropy Rate
*¥%¥ CPU Entropy Source ***
[*] “nable CPU Entropy Source as LRNG Seed Source
(8) PU Entropy Source Entropy Rate

- CPU (e.g. Intel RDSEED, POWER DARN, ARM SMC Calling Convention or RNDR register)

- Data immediately available when LRNG requests it

Additional conditioning — slow source

- RNGDs
- In-kernel hardware RNG drivers

- All received data added to “auxiliary pool* with hash update
operation

- Data “trickles in” over time
Every entropy source has individual entropy estimate

- Taken at face value — each ES requires its own entropy assessment:""-.....

Kernel Start User Space

Hash Init I‘gg.?.i
Hash Update e
: Y _
Hash Update I\gr(':t.?.i
Vm
Hash Update je———
Yy
Hash Final —\—'
Yy
Has: Init L | | | - | |
~.| Hash Update I

Auxiliary Pool

I I E S Mean Duration in Cycles for one IRQ
I’] Iq [|
te r a []

214
Interrupts
* Interrupt timing 2 e \-/ \=\
- Allinterrupts are treated as one entropy ¢ #° —_ .
source f s \
* Mutually exclusive with Kernel RNG ES ¢+ - o - - -

* Data collection executed in IRQ context
* Data compression executed partially in IRQ and process context
* Data compression is a hash update operation

* High performance: up to twice as fast as legacy /dev/random in IRQ context
with LRNG_CONTINUOUS COMPRESSION enabled

— Even faster Wlthout Con“nuous CompreSS|0n [*] ‘nable Interrupt Entropy Source as LRNG Seed Source

ontinuous entropy compression boot time setting (Enable co
[*] “untime-switchable continuous entropy compression
RNG Entropy Collection Pool Size (1024 interrupt events (def
[*] "nable interrupt entropy source online health tests
(256) 'nterrupt Entropy Source Entropy Rate

Entropy Estim.

Internal ES: IR
(e i P Other
" Cycle / GCD & OxFF 32-bit Event Data
Count s T i

D ata Processin g QT e o cotron on

—
8 LSB of time stamp divided by o 7 T
GCD concatenated into per-CPU R
collection pool Entropy Pool___Hash |->1 Hash __JieTutES
- Entropy estimate
— Health test
. . Hash Init
* 32 bits of other event data concatenated into per-CPU g
collection pool o AT T
N _ { [Hashupdate |-~
* When array full -~ conditioned into per-CPU entropy pool
_ _ - - [[Heshupdaee M-I
— When entropy is required — conditioning of all entro L [
- 1
pools into one message digest Hasﬁ | [Digest cPuo]
. . as ate n—,\
- Addition of all per-CPU entropy estimates = “_.”E’.f’trcfpypoo. CL L I OO0

CPU1

CPUn

O
Internal ES:

Scheduler Events

* Scheduler-based context switch timing

— All context switches are treated as one entropy
source

* Data collection executed in scheduler context

~— Collection: adding data into collection array — high-
performance (couple of cycles)

* Data compression executed in process context during
reseedlng Of DRNG [*] nab%ghggﬁégzeinggggpgoggﬁice as LRNG Seed Source

(256) “cheduler Entropy Source Entropy Rate

* Data compression is a hash operation

e
Internal ES: Scheduler

\
64-bit
Cycle | —
Count | i:s:iii]ii: 0 iiiiiiiiiii
a y
”ii”i” iiiiliiiiCPUOCollectionPool

Data Processing

* 8 LSB of time stamp divided bg
GCD concatenated into per-CPU
collection pool

- Entropy estimate
- Health test

* When array full — overwriting of
oldest value

* When entropy Is required - _
conditioning of all entropy pools into
one message digest

- Addition of all per-CPU entropy
estimates

Entropy Estim.
Health Test

/ GCD & OxFF

Scheduler Execution CPU 0

N ——4

Scheduler Execution CPU x

........... Process Context

CPU 2 Collection Pooll | | | | i | | | | ” | ” | ”_>7|_|asl,l_|§gf£dgaetraEs
CPUNCoIIectionPool”i”ii” ”i”il”’l I I I - I I

Kernel Start

y

Hash Init

.........
L+

Filled Collection Pool Instance

Hash Update

T [T

Y

Hash Final

Y

Hash Init

[Digest cPUO | CPUO

Y

Hash Update

Entropy Pool A

—
Internal ES Testing

Interfaces

* Testing code is compile time option
* Access via DebugFS
* Testing supports data collection at boot time and runtime:

Raw unprocessed entropy time stamps for IRQ ES
Raw auxiliary IRQ data

Raw unprocessed entropy time stamps for Scheduler ES

Performance data for LRNG’s IRQ handler
Performance data for LRNG’s Scheduler handler

* Hash testing interface for built-in SHA-256
* Full SP800-90B assessment documentation

* Raw entropy collection and analysis tools
provided

[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*]

[*]
[*]
[*]
[*]
[*]

[*]
[*]
]

[1]

% Tnterrupt Entropy Source Test Interfaces *

nterface to
ntropy test
ntropy test
ntropy test
ntropy test
ntropy test

est interface to LRNG
RNG interrupt entropy

Test System Entropy of Sufficient
’ ‘ 1,000,000 Traces ’ Entropy
ARMvT rev 5 1.9344 Y
ARMvT rev 5 7.07088 Y
(Freescale i.MX53)%2
ARMvT rev 5 6.638399 Y
(Freescale i.MX6 Ultralite)??|

ARM 64 bit AppliedMicro X-Gene 5.599128 Y

Mustang Board
Intel Atom Z530 — using GUI 3.38584 Y
Intel i7 7500U Skylake - 64-bit KVM 3.452064 Y

environment
Intel i7 8565U Whiskey Lake — 64-bit 7.400136 Y
KVM environment
Intel i7 8565U Whiskey Lake — 32-bit 7.405704
KVM environment

Intel i7 8565U Whiskey Lake 6.871 Y
Intel Xeon Gold 6234 4.434168 Y
IBM POWER 8 LE 8286-42A 6.830712 Y
IBM POWER 7 BE 8202-E4C 4.233912 Y
IBM System Z z13 (machine 2964) 4.366368 Y
IBM System Z z15 (machine 8561) 5.691832 Y
MIPS Atheros AR7241 rev 177 7.157064 Y
MIPS Lantiq 34Kc V5.6%°] 7.032740 Y
Qualcomm TPQ4019 ARMv725] 6.638405 Y
SiFive HiFive Unmatched RISC-V U74 2.387470 Y

obtain raw unprocessed IRQ noise source data
interface to Jiffies of IRQ noise source
interface to IRQ number noise source

interface to IRQ flags noise source

interface to RETIP value of IRQ noise source
interface to IRQ register value noise source

raw entropy IRQ storage array
source performance monitor
x% Scheduler Entropy Source Test Interfaces *

nterface to obtain raw unprocessed scheduler noise source
ntropy test interface to PID value

ntropy test interface to task start time value
ntropy test interface to task context switch numbers
RNG scheduler entropy source performance monitor
#% Auxiliary Test Interfaces ***

nable LRNG ACVT Hash interface

nable runtime configuration of entropy sources
nable runtime configuration of max reseed threshold
orce CPU ES compression operation

e
Internal ES Health Test

* Health test compile-time configurable CONFIG_LRNG_SELFTEST:
° - The power-on self-tests are executed during boot time
Power Up Self teStS covering the ChaCha20 DRNG, the hash operation used for
- Al Cryptographic mechanisms processing the entropy pools and the auxiliary pool, and

Ti t t the time stamp management of the LRNG.

- Ime Stamp managemen

o The on-demand self-tests are triggered by writing any
APT/ RCT value into the SysFS file selftest_status. At the same

- Intermittent and permanent health failures time, when reading this file, the test status is

returned. A zero indicates that all tests were executed

* Time-Stamp Pattern detection: 1st/2nd/3rd successfully.
discrete derivative of time # 0

* Blocking interface: Wait until APT power-up _ _ _
The online health tests validate the noise source at

teStIng Complete runtime for fatal errors. These tests include SP800-90B
compliant tests which are invoked if the system is booted

* PrOVideS SP8OO-9OB Compliance Of internal ES with fips=1l. In case of fatal errors during active

SP800-90B tests, the issue is logged and the noise
data is discarded. These tests are required for full
compliance with SP800-90B.

CONFIG_LRNG_HEALTH_TESTS:

General Testing

* Automated regression test suite covering the different options of LRNG
« Locking torture test of loading/unloading DRNG

extensions under full load
* Applied kernel framework tests
- KASAN
- UBSAN
- Lockdep
- Memory leak detector
- Sparse
 Performance tests of DRNG
« Syscall validation testing

» Test of LRNG behavior in atomic
contexts

Executing test with kernel command line fips=1 lrng_jent.jitterrng=256 lrng_arch
random.archrandom=256
D] Jitter RNG: Jitter RNG working on system
[Jitter RNG: used for seeding
Executing test with kernel command line lrng jent.jitterrng=256 lrng_archrandom.
larchrandom=256
[Jitter RNG: Jitter RNG working on system
[Jitter RNG: used for seeding
Executing test with kernel command line lrng pool.ntgl=1 lrng jent.jitterrng=256
1rng archrandom.archrandom=256
Jitter RNG: Jitter RNG working on system
[D] Jitter RNG: used for seeding
Executing test with kernel command line fips=1 lrng pool.ntgl=1 lrng jent.jitter
rng=256 lrng_archrandom.archrandom=256
)] Jitter RNG: Jitter RNG working on system
D] Jitter RNG: used for seeding
no failures
Testing ended Do 10. Jun 11:30:27 CEST 2021
Testing started Do 10. Jun 11:30:27 CEST 2021
Executing test with kernel command line fips=1 lrng jent.jitterrng=256 lrng arch
random.archrandom=256
[Atomic: LRNG executing in atomic contexts
Executing test with kernel command line lrng_jent.jitterrng=256 lrng_archrandom.
rchrandom=256
[Atomic: LRNG executing in atomic contexts
Executing test with kernel command line lrng pool.ntgl=1l lrng_jent.jitterrng=256
1rng_archrandom.archrandom=256
[Atomic: LRNG executing in atomic contexts
Executing test with kernel command line fips=1 lrng pool.ntgl=1 lrng jent.jitter
rng=256 lrng_archrandom.archrandom=256
Atomic: LRNG executing in atomic contexts
no failures
Testing ended Do 10. Jun 11:30:44 CEST 2021
] ALL TESTS PASSED
no failures
Testing ended Do 10. Jun 11:30:44 CEST 2021

‘ DRNG Type ‘ Cipher | Cipher Impl. ‘ Read Size ‘ Performance ‘
HMAC DRBG SHA-512 C 64 bytes 13.8 MB/s
HMAC DRBG SHA-512 AVX2 16 bytes 4.7 MB/s
HMAC DRBG SHA-512 AVX2 32 bytes 11.6 MB/s
HMAC DRBG SHA-512 AVX2 64 bytes 23.3 MB/s
HMAC DRBG SHA-512 AVX2 128 bytes 38.3 MB/s
HMAC DRBG SHA-512 AVX2 4096 bytes | 92.1 MB/s

Hash DRBG SHA-512 C 64 bytes 27.9 MB/s
Hash DRBG SHA-512 AVX2 16 bytes 13.1 MB/s
Hash DRBG SHA-512 AVX2 32 bytes 25.9 MB/s
Hash DRBG SHA-512 AVX2 64 bytes 51.1 MB/s
Hash DRBG AVX2 128 bytes 83.3 MB/s
Hash DRBG AVX2 4096 bytes | 217.8 MB/s
CTR DRBG C 16 bytes 15.4 MB/s
CTR DRBG AES-NI 16 bytes 24.4 MB/s
CTR DRBG AES-NI 32 bytes 49.3 MB/s
CTR DRBG AES-NI 64 bytes 96.2 MB/s
CTR DRBG AES-256 AES-NI 128 bytes | 177.1 MB/s
CTR DRBG AES-256 AES-NI 4096 bytes | 1.247 GB/s
ChaCha20 ChaCha20 C 16 bytes 42.0 MB/s
ChaCha20 ChaCha20 C 32 bytes 84.5 MB/s
ChaCha20 ChaCha20 C 64 bytes 131.0 MB/s
ChaCha20 ChaCha20 C 128 bytes | 194.7 MB/s
ChaCha20 ChaCha20 C 4096 bytes | 550.3 MB/s
Legacy /dev/random SHA-1 C 10 bytes 12.9 MB/s
Legacy /dev/random | ChaCha20 C 16 bytes 29.2 MB/s
Legacy /dev/random | ChaCha20 C 32 bytes 58.6 MB/s
Legacy /dev/random | ChaCha20 C 64 bytes 80.0 MB/s
Legacy /dev/random | ChaCha20 C 128 bytes | 118.7 MB/s
Legacy /dev/random | ChaCha20 C 4096 bytes | 220.2 MB/s

e
LRNG - Resources

* Code / Tests / Documentation: https://github.com/smuellerDD/Irng
° Testlng Conducted on DR;gtngﬁéocé}éggﬁzg?fctr_a65256

LRNG security strength in bits: 256
number of DRNG instances: 8

- Intel X861 AMD1 ARM1 MIPS! POWER LE / ;i?gg;déoﬁ?rcng;la;égSzﬁzgglg?chttelRNG CPU Auxiliary
IBM Z, RISC-V LRNG fully seededs true
Auxiliary ES properties:
Hash for operating entropy pool: sha512

- Embedded SyStemS and Blg |r0n IRQ ES properties (internal ES 0):

Hash for operating entropy pool: sha512

— H - i rr 1lecti ize:
Large NUMA systems with up to 160 CPUs, [Eitsinmaeasi-aiias
High-resoluti timer: tr
8 nodes e e s
Scheduler ES properties (internal ES 1):
. Hash for rati AE [1: sha512
* Backport patches available per-CPU scheduler event collection size: 8192
Standards compliance: SP800-90B
High-resolution timer: true
- LTS:6.12, 6.6, 6.1, 5.15, 5.10, 5.4 Jitteriilo ES properties:
! ! ! ! ! Enabled: true
CPU ES properties:
Hash for compressing data: N/A
Data multiplier: 1

https://github.com/smuellerDD/lrng

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20

