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Abstract
The kernel crypto API contains deterministic random number gener-

ators (DRNG) which a caller must seed and reseed. The task of seeding
a DRNG is a non-trivial task requiring the consideration of a significant
number of aspects. The Linux Random Number Generator (LRNG) fills
that gap to transparently seed and reseed DRNGs. A user of the LRNG
obtains random numbers from an appropriately seeded and initialized
DRNG. Further, the LRNG controls various entropy sources guaranteeing
that they are properly initialized and managed.
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1 Introduction
The idea for the LRNG design occurred during a study that was conducted for
the German BSI analyzing the behavior of entropy and the operation of entropy
collection in virtual environments. As mentioned above, modeling noise sources
for block devices and HIDs is not helpful for virtual environments. However,
any kind of interaction with virtualized or real hardware requires a VMM to
still issue interrupts. These interrupts are issued at the time the event is relayed
to the guest. As on bare metal, interrupts are issued based on either a trigger
point generated by the virtual machine or by external entities wanting to interact
with the guest. Irrespective whether the VMM translates a particular device
type into another device type (e.g. a block device into a network request),
the timing of the interrupts triggered by these requests is hardly affected by
the VMM operation. Thus entropy collection based on the time stamping of
interrupts is hardly affected by a VMM.

Before discussing the design of the LRNG, the goals of the LRNG design are
enumerated:

1. The LRNG manages the proper seeding and reseeding of DRNGs. In ad-
dition, it provides internal entropy sources which the LRNG fully controls
as well as interfaces to obtain data from external entropy sources.

2. During boot time, the LRNG is designed to already provide random num-
bers with sufficiently high entropy. It is common that long-running dae-
mons with cryptographic support seed their deterministic random number
generators (DRNG) when they start during boot time. The re-seeding of
those DRNGs may be conducted very much later, if at all which implies
that until such re-seeding happens, the DRNG may provide weak random
numbers. The LRNG is intended to ensure that for such use cases, suf-
ficient entropy is available during early user space boot. Daemons that
link with OpenSSL, for example, use a DRNG that is not automatically
re-seeded by OpenSSL. If the author of such daemons is not careful, the
OpenSSL DRNG is seeded once during boot time of the system and never
thereafter. Hence seeding such DRNGs with random numbers having high
entropy is very important.
As documented in chapter 6 the DRNG is seeded with full security strength
of 256 bits during the first steps of the initramfs time after about 1.3 sec-
onds after boot. That measurement was taken within a virtual machine
with very few devices attached where the legacy /dev/random implemen-
tation initializes the nonblocking_pool or the ChaCha20 DRNG after 30
seconds or more after boot with 128 bits of entropy. In addition, the LRNG
maintains the information by when the DRNG is “minimally” seeded with
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128 bits of entropy to trigger in-kernel callers requesting random numbers
with sufficient quality. This is commonly achieved even before user space
is initiated.

3. All user-visible behavior implemented by the legacy /dev/random – such
as the per-NUMA-node DRNG instances are provided by the LRNG as
well.

4. The LRNG must be very lightweight in hot code paths. As described in the
design in chapter 2, the interrupt entropy source of the LRNG is hooked
into the interrupt handler and therefore should finish the code path in
interrupt context very fast. Similarly, the scheduler entropy source hooks
into the scheduler operation requiring to be very lightweight.

5. The LRNG must not use locking in hot code paths to limit the impact on
massively parallel systems.

6. The LRNG must handle modern computing environments without a degra-
dation of entropy. The LRNG therefore must work in virtualized environ-
ments, with SSDs, on systems without HIDs or block devices and so forth.

7. The LRNG must provide a design that allows quantitative testing of the
entropy behavior.

8. The LRNG must use testable and widely accepted cryptography for con-
ditioning.

9. The LRNG must allow the use of cipher implementations backed by archi-
tecture specific optimized assembler code or even hardware accelerators.
This provides the potential for lowering the CPU costs when generating
random numbers – less power is required for the operation and battery
time is conserved.

10. The LRNG must separate the cryptographic processing from the entropy
source maintenance to allow a replacement of these components.

11. The LRNG shall offer flexible configurations allowing vendors to apply the
settings applicable to their environment.

12. When enabling the LRNG interface to behave like /dev/random, it pro-
vides an API and ABI compliant implementation of all interfaces allowing
to serve as a drop-in replacement.

1.1 Properties Offered by the LRNG
Apart from the fact that a user does not need to manage the DRNG and its
seeding status, the LRNG provides the following properties making the LRNG a
contemporary and future-proof entropy source and DRNG management frame-
work:

• Sole use of crypto for data processing:

– Exclusive use of a hash operation for conditioning entropy data with a
clear mathematical description as given section 2.2 – non-cryptographic
operations like LFSR are not used.
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– The LRNG uses only properly defined and implemented cryptographic
algorithms unlike the use of the SHA-1 transformation in the legacy
/dev/random implementation that is not compliant with SHA-1 as
defined in FIPS 180-4.

– Hash operations use NUMA-node-local hash instances to benefit large
parallel systems.

– LRNG uses limited number of data post-processing steps as doc-
umented in section 2.2 compared to the large variation of differ-
ent post-processing steps in the legacy /dev/random implementation
that have no apparent mathematical description (see section 6.5).

• Performance

– Faster by up to 130% in the critical code path of the interrupt handler
depending on data collection size configurable at kernel compile time
as outlined in section 6.2

– Block device data path is not instrumented by LRNG which implies
that the LRNG does not add any delays compared to the legacy
/dev/random.

– Configurable data collection sizes to accommodate small environ-
ments and big environments via CONFIG_LRNG_COLLECTION_SIZE.

– Entropy collection using an almost never contended lock to benefit
large parallel systems – worst case rate of contention is the number
of DRNG reseeds, usually the number of potential contentions per
10 minutes is equal to number of NUMA nodes.

– ChaCha20 DRNG is significantly faster as implemented in the legacy
/dev/random as demonstrated with table 3.

– Faster entropy collection during boot time to reach fully seeded level,
including on virtual systems or systems with SSDs as outlined in
section 6.1.

– High-performance implementation of scheduler entropy source requir-
ing only a few cycles to collect entropy.

• Testing

– Availablility of run-time health tests of the raw unconditioned entropy
source data of the interrupt entropy source to identify degradation
of the available entropy as documented in section 2.5.2. Such health
tests are important today due to virtual machine monitors reducing
the resolution of or disabling the high-resolution timer.

– Heuristic entropy estimation for the interrupt entropy source is based
on quantitative measurements and analysis following SP800-90B and
not on coincidental underestimation of entropy applied by the legacy
/dev/random as outlined in [2] section 4.4.

– Power-on self tests for critical deterministic components (ChaCha20
DRNG, software hash implementation, and entropy collection logic)
not already covered by power-up tests of the kernel crypto API as
documented in section 2.16.
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– Availability of test interfaces for all operational stages of the LRNG
including boot-time raw entropy event data sampling as outlined in
section 2.17.

– Fully testable ChaCha20 DRNG via a userspace ChaCha20 DRNG
implementation.

– In case of using the SP800-90A DRBG, it is fully testable and tested
via the NIST ACVP test framework, for example certificates A628,
and A737.

– In case of using the kernel crypto API SHASH hash implementation,
it is fully testable and tested via the NIST ACVP test framework,
for example certificates A734, A737, and A738.

– The LRNG offers a test interface to validate the used software hash
implementation and in particular that the LRNG invokes the hash
correctly, allowing a NIST ACVP-compliant test cycle – see sec-
tion 2.17.

– Availability of stress testing covering the different code paths for data
and mechanism (de)allocations and code paths covered with locks.

– Availability of fully automated regression testing covering different
LRNG functions in different configurations allow an unattended func-
tional verification testing.

• Entropy collection of the internal interrupt and scheduler-based entropy
source

– The LRNG is fully compliant to SP800-90B requirements and is
shipped with a full SP800-90B assessment and all required test tools.
The legacy /dev/random implementation on the other hand has ar-
chitectural limitations which does not easily allow to bring the imple-
mentation in compliance with SP800-90B as outlined in section 6.5.

– Full entropy assessment and description is provided with chapter 3,
specifically section 3.3.6.

– The LRNG provides a configuration to be compliant to SP800-90C
following RBG2(NP) as well as RBG2(P) construction methods.

–

• Configurable

– LRNG kernel configuration allows configuration that is functionally
equivalent to the legacy /dev/random. Non-compiled additional code
is folded into no-ops.

– The following additional functions are compile-time selectable inde-
pendent of each other:

≻ Enabling of switchable cryptographic implementation support.
This allows enabling SP800-90A DRBG.

≻ Independent enabling of the available entropy source.
≻ Enabling of internal entropy source health tests including SP800-

90B health tests.
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≻ Enabling of test interface allowing to enable each test interface
individually.

≻ Enabling of the power-up self test.
≻ Selectively enabling of each entropy source and configuring their

entropy rate.
≻ The entropy rate used to credit the internal interrupt entropy

source, the external CPU-based entropy source and Jitter RNG
entropy source can be configured including setting an entropy
rate of zero or full entropy – see sections 2.10.1 and 2.9.1. A rate
of zero implies that the entropy source still provides data which
is credited with zero bits of entropy.

≻ Enabling the API and ABI compatible drop-in replacement for
/dev/random.

– At boot-time, the SP800-90B health tests for the internal interrupt
entropy source can be enabled as outlined in section 2.5.2.At compile
time, the entropy rate used to credit the internal and external entropy
sources can be configured including setting an entropy rate of zero
or full entropy – see sections 2.5.1, 2.10.1 and 2.9.1.

– Configurable seeding strategies are provided following different con-
cepts.

• Run-time pluggable cryptographic implementations used for all data pro-
cessing steps specified in section 2.2

– The DRNG can be replaced with a different implementation allowing
any type of DRNG to provide data via the output interfaces. The
LRNG provides the following types of DRNG implementations:

≻ ChaCha20-based software implementation that is used per de-
fault.

≻ SP800-90A DRBG using accelerated cryptographic implementa-
tions that may sleep.

≻ Any DRNG that is accessible via the kernel crypto API RNG
subsystem.

– The hash component can be replaced with any other hash imple-
mentation provided the implementation does not sleep. The LRNG
provides the following types of hash implementations:

≻ SHA-256 software implementation that is used per default. Due
to kernel build system inconsistencies, the software SHA-1 im-
plementation is used if the kernel crypto API is not compiled.

≻ Default of SHA-512 hash using the fastest hash implementation
available via the kernel crypto API SHASH subsystem. During
boot time or runtime, other hashes can be selected.

1.2 Document Structure
This paper covers the following topics in the subsequent chapters:
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• The design of the LRNG is documented in chapter 2. The design discus-
sion references to the actual implementation whose source code is publicly
available.

• The statistical testing of the internal interrupt entropy source including
the SP800-90B compliance assessment is provided in chapter 3.

• The statistical testing of the internal scheduler entropy source including
the SP800-90B compliance assessment is provided in chapter 4.

• The discussion of various configurations offered by the LRNG is given in
chapter 5.

• The comparison of the LRNG with the legacy /dev/random is covered in
chapter 6.

• The various appendices cover miscellaneous topics supporting the general
description.

2 LRNG Design
The LRNG can be characterized with figure 2.1 which provides a big picture of
the LRNG processing and components.
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Figure 2.1: LRNG Big Picture
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The colors indicate the different entropy sources managed by the LRNG.
The LRNG introduces the concept of slow and fast entropy sources. Fast

entropy sources provide entropy at the time of request. A slow entropy source
collects data over time into an entropy pool.

The entropy source that is under full control of the LRNG, also called the
internal entropy source, comprises of the:

• Orange marked parts consisting of the IRQ entropy source that feeds into
the per-CPU entropy pool from which the hash of pools is derived.

• The indigo marked parts refer to the scheduler entropy source that feeds
per-CPU collection pools. These collection pools are hashed into per-CPU
entropy pools when seeding of the DRNG is to be performed.

The following external entropy sources are present. These entropy sources are
expected to be fully self-contained. The LRNG only requests data from them
and expects that the entropy estimate provided with the data is correct:

• The auxiliary pool collects data from external entropy sources which de-
liver data at times not controllable by the LRNG.

• The CPU entropy source obtains data from a potentially existing source
in the CPU like RDSEED on Intel CPUs.

• The Jitter RNG entropy source is another external entropy source.

• The legacy random number generator provided with the kernel file random.c
can be enabled at compile time to serve as an entropy source. Its imple-
mentation of get_random_bytes is used to provide data to the LRNG.
As the legacy RNG rests on collecting interrupts and its derivatives, the
LRNG’s internal entropy source recording interrupt occurrences is auto-
matically deactivated.

The LRNG treats all external and internal entropy sources equally. It can handle
the situations where one or more entropy sources returns little or no entropy.

The IRQ entropy source is considered to be the internal entropy source which
delivers entropy as assessed in chapter 3. In addition, the scheduler entropy
source is assessed in chapter 4 which provides its complete entropy assessment.
All other entropy sources are expected to provide their own entropy assessment
supporting the claim of the supplied entropy that is credited by the LRNG
for these sources. The LRNG treats these additional entropy sources as black
boxes and take their claimed entropy rate at face value. The LRNG, however,
guarantees that all entropy sources are processed in compliance with defined
standards as documented in chapter 3.

The “other event data” is considered to provide additional data that contains
no entropy. However, the LRNG collects it to ensure further mixing of the
internal state.

The different colors used in figure 2.1 depict the different entropy sources
mentioned before.

The LRNG offers various interfaces to obtain random numbers as depicted
in figure 2.2.
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Figure 2.2: LRNG Interfaces To Obtain Random Numbers

Based on this figure, the following types of interfaces are available which are
marked with the different colors in figure 2.2. Each type of interface can be
selectively enabled and disabled at compile time:

• Legacy RNG interfaces: The common interfaces found in today’s ker-
nels include /dev/random, /dev/urandom, the getrandom system call or
the get_random_bytes kernel-internal interface. These interfaces behave
identically to the legacy RNG and thus allow the LRNG to act as a drop-
in replacement. When not compiling those, the LRNG can be operated in
parallel with the legacy RNG.

• Hardware Random Number Generator framework: The HW_RAND frame-
work can access the LRNG which is named “LRNG”. This implies that
user space can access the LRNG via /dev/hwrng.

• Kernel Crypto API RNG framework: The kernel crypto API RNG frame-
work may access the LRNG via the names of either “stdrng” – provid-
ing access to a guaranteed fully seeded and fully initialized LRNG – and
“LRNG_atomic” which accesses the LRNG interface that can be used in
atomic contexts.

• The device file of /dev/lrng behaves identically to the /dev/random device
file including read/write operations, sleeping on it with the select(2)
system call or using all IOCTLs defined for /dev/random. This file is
intended for the case where the legacy RNG is still compiled but user
space shall be capable of accessing the LRNG with all its properties.

• When reading data from /dev/random that was opened with O_SYNC, or
using getrandom(2) with GRND_RANDOM a special DRNG instance that
is continuously reseeded is used. This implies the DRNG operates with
prediction-resistance (SP800-90A terminology) or is NTG.1 compliant (Ger-
man BSI AIS 20/31 from 2011). In addition, when the kernel executes in
FIPS mode, the behavior complies with all FIPS requirements allowing
the output of the LRNG to be claimed to be from a vetted condition-
ing component. I.e. the caller may safely use this data to seed another
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DRBG. To achieve this, the following checks are applied in the function
lrng_drng_get:

– Require a reseed - in FIPS mode, the LRNG requires the availability
of at least 256 bits of entropy in its entropy sources for the reseed to
commence.

– Produce at most only 256 bits of random bits from the DRNG (i.e.
the security strength of the DRNG).

• The kernel-internal interfaces of lrng_get_random_bytes, lrng_get_random_bytes_full
and lrng_get_random_bytes_pr are always provided.

2.1 LRNG Components
The LRNG consists of the following components shown in figure 2.1:

1. The LRNG implements a DRNG. Unless using the interface providing
prediction resistance, the DRNG always generates the requested amount
of output. When using the SP800-90A terminology it operates without
prediction resistance. The DRNG maintains a counter of how many bytes
were generated since last re-seed and a timer of the elapsed time since last
re-seed. If either the counter or the timer reaches a threshold, the DRNG
is seeded from the entropy sources with the available entropy.
In case the Linux kernel detects a NUMA system, one DRNG instance per
NUMA node is maintained.
Depending on the used interface to request data from the DRNG, the
caller may be put to sleep until the LRNG is fully seeded:

(a) All interfaces using the lrng_get_entropy_bytes function always
generates data including when the LRNG is not properly seeded.

(b) All interfaces using the lrng_get_entropy_bytes_full function gen-
erate data only when the LRNG is fully seeded and fully initialized.

(c) All interfaces using the lrng_get_entropy_bytes_pr function gen-
erate data only when the LRNG is fully initialized and received a
reseeding from the entropy sources immediately before the random
bits are generated. Only an amount of random bits are generated
that equals to the amount of entropy the DRNG was seeded with.

2. The DRNG is seeded by concatenating the data from the following sources
in case they are enabled at kernel compile time:

(a) the output of the auxiliary pool,
(b) the output of the per-CPU interrupt entropy pools,
(c) the output of the per-CPU scheduler entropy pools,
(d) the Jitter RNG if available,
(e) the CPU-based entropy source such as Intel RDSEED if available,

and
(f) the legacy RNG output.
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The entropy estimate of the data of all entropy sources are added to form
the entropy estimate of the data used to seed the DRNG with. The LRNG
ensures, however, that the DRNG after seeding is at maximum the security
strength of the used DRNG implementation of 256 bits.
The LRNG is designed such that none of these entropy sources can domi-
nate the other entropy sources to provide seed data to the DRNG due to
the following:

(a) During boot time, the amount of available entropy is the trigger point
to (re)seed the DRNG following the explanation in the next section.

(b) At runtime, the the DRNG reseed is triggered by either the DRNG
due to hitting the aforementioned thresholds or by a user space caller.
The reseed is never triggered by the entropy sources.

3. To support backward secrecy, the following steps are applied:

(a) The temporary seed buffer holding the concatenation of data from
all entropy sources to seed the DRNG is injected into the auxiliary
pool like other data by hashing it together with the existing auxiliary
pool data to form the new auxiliary pool content. The injection of
the temporary seed buffer will not alter the entropy estimation of the
auxiliary pool.

(b) The message digest created for each per-CPU entropy pool of the
scheduler and interrupt entropy sources is inserted into the corre-
sponding per-CPU entropy pool.

The LRNG allows the DRNG mechanism and the used hash to be changed
at runtime. Per default, a ChaCha20-based DRNG is used1 together with a
software implementation of SHA-256. The LRNG also offers an SP800-90A
DRBG based on the Linux kernel crypto API DRBG implementation along with
the most accelerated SHA-512 hash implementation from the kernel crypto API.

The following subsections cover the different components of the LRNG from
the bottom to the top.

2.2 LRNG Data Processing
The processing of entropic data from the different entropy source before injecting
them into the DRNG is performed with the following mathematical operations.
The operation SHA() refers to the hash operation using the message digest
implementation that is currently present, i.e. either SHA-256 or SHA-512 (in
case the kernel crypto API is not compiled, SHA-1 is used).

2.2.1 Scheduler and Interrupt Entropy Sources

1. Truncation: The time stamps received by the IRQ as well as the sched-
uler entropy sources are truncated to 8 least significant bits (or 32 least
significant bits during boot time) – note the GCD is a value calculated
during initialization and is fixed thereafter which implies that the time
stamp divided by the GCD is the raw entropy value: t8 (or t32)

1The ChaCha20-DRNG implemented for the LRNG is also provided as a stand-alone user
space deterministic random number generator.
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2. Concatenation: The time stamps received and truncated by the IRQ and
scheduler entropy sources as well as auxiliary 32 bit words a32 are con-
catenated to fill the per-CPU collection pool that is capable of holding
1,024 8-bit words2 - the order of the data a32 or t8 present in the concate-
nation depends on the occurrence of events - the following formula depicts
one possible order for illustration - the implementation is provided with
functions _LRNG_pcpu_array_add_u32 and LRNG_pcpu_array_add_slot:

CP = t8n−1019 ||a32n
||t8n−1018 || ... ||t8n

(2.1)

Note: In case the continuous compression operation is disabled for the
IRQ entropy source, the auxiliary 32 bit words a32 are discarded and are
not injected into the collection pool. This approach is taken to prevent
non-entropy data to potentially overwrite entropy data in the collection
pool when the array wraps. The scheduler entropy source only records
time stamps.

2.2.2 Interrupt Entropy Source

1. Hashing: For the IRQ entropy source, all concatenated time stamp data
received from the interrupts since the last output generation of the per-
CPU entropy pool EPCP Un−1 are hashed together with that last output
EPCP Un−1 to generate new per-CPU entropy pool output of EPCP Un

.
The following steps are performed:

(a) One filled per-CPU collection pool for the interrupt entropy source
CPIRQm

is inserted into the per-CPU entropy pool using a hash
update operation.

(b) To generate data from the entropy pool EPCP Un
as used by func-

tion 2.3, a hash final operation is performed.
(c) Once a hash final operation is performed it is followed by an immedi-

ate re-initialization of the hash state with a hash init operation and
adding the just calculated message digest with the first hash update.

The implementation is provided with function LRNG_pcpu_array_compress
together with the function LRNG_pcpu_pool_hash_one generating data
from the per-CPU entropy pool:

EPCP Un = SHA(EPCP Un−1 ||CPIRQm−(n−1) ||...||CPIRQm−1 ||CPIRQm)
(2.2)

Note: The hash update operation is performed at the following occasions:

(a) Continuous compression enabled: The hash update is performed ev-
ery time the collection pool is full. This operation therefore is per-
formed in interrupt context. In addition, the operation is performed
at the time operation of equation 2.3 is invoked which is in process
context.

2The LRNG collection size is compile-time configurable where 1,024 is a default value.
When configuring a different value, the number of the concatenated data must be adjusted as
needed. However, this modification has no impact to the illustration of the data processing.
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(b) Continuous compression enabled and disabled: The hash update is
performed at the time the operation of equation 2.3 is invoked, i.e.
at the time the DRNG is reseeded. This operation therefore is per-
formed in process context. This guarantees that all unprocessed en-
tropy data in the collection pool is added to the entropy pool at the
time the entropy pool is requested for random data.

This implies that in case of disabled continuous compression, the oldest
entries in the collection pool are overwritten with newer entropy event data
when more entropy events are collected than can be held in the collection
pool between DRNG reseeds.

2. Hashing: For the IRQ entropy source, a message digest of all per-CPU
entropy pools is calculated. This message digest is used to fill the in-
terrupt entropy source output buffer S discussed in the following - the
implementation is provided with function LRNG_pcpu_pool_hash:

EPalln
= SHA(EPCP U0n

||EPCP U1n
|| ... ||EPCP UXn

) (2.3)

3. Truncation: For the interrupt entropy pool, the most-significant bits (MSB)
defined by the requested number of bits (commonly equal to the secu-
rity strength of the DRBG) or the entropy available transported with the
buffer (which is the minimum of the message digest size and the available
entropy in all entropy pools), whatever is smaller, are obtained from the
interrupt entropy source output buffer S - the implementation is provided
with function LRNG_pcpu_pool_hash:

En = MSBmin(entropy,security strength)(EPalln
) (2.4)

2.2.3 Scheduler Entropy Source

1. Hashing: For the scheduler-based entropy source, all concatenated time
stamp data received from the interrupts since the last output generation
of the per-CPU entropy pool SPCP Un−1 are hashed together with that
last output SPCP Un−1 to generate new per-CPU entropy pool output of
SPCP Un

. The following steps are performed:

(a) One filled per-CPU collection pool for the interrupt entropy source
CPSCHEDm

is inserted into the per-CPU entropy pool using a hash
update operation.

(b) To generate data from the entropy pool SPCP Un as used by func-
tion 2.6, a hash final operation is performed.

(c) Once a hash final operation is performed it is followed by an immedi-
ate re-initialization of the hash state with a hash init operation and
adding the just calculated message digest with the first hash update.

The implementation is provided with function lrng_sched_pool_hash_one
generating data from the per-CPU entropy pool:

SPCP Un = SHA(SPCP Un−1 ||CPSCHEDm−(n−1) ||...||CPSCHEDm−1 ||CPSCHEDm)
(2.5)
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Note: The hash update is performed at the time the operation of equa-
tion 2.6 is invoked, i.e. at the time the DRNG is reseeded. This operation
therefore is performed in process context. This guarantees that all unpro-
cessed entropy data in the collection pool is added to the entropy pool at
the time the entropy pool is requested for random data. This implies that
he oldest entries in the collection pool are overwritten with newer entropy
event data when more entropy events are collected than can be held in
the collection pool between DRNG reseeds.

2. Hashing: For the scheduler-based entropy source, a message digest of all
per-CPU entropy pools is calculated. This message digest is used to fill
the interrupt entropy source output buffer S discussed in the following -
the implementation is provided with function lrng_sched_pool_hash:

SPalln = SHA(SPCP U0n ||SPCP U1n || ... ||SPCP UXn) (2.6)

3. Truncation: Just like the interrupt entropy source, the scheduler entropy
source applies a truncation to the generated data as implemented by the
function lrng_sched_pool_hash:

Sn = MSBmin(entropy,security strength)(SPn) (2.7)

2.2.4 Auxiliary Entropy Pool

1. Hashing: When new data Dm is added to the auxiliary pool AP , the
data is inserted into the auxiliary pool with a hash update operation
- the implementation is provided with function LRNG_pool_insert_aux.
The message digest generation is performed at the time entropy from the
auxiliary pool is requested. To ensure backward secrecy, the temporary
seed buffer Tn−1 that holds among others the auxiliary pool digest from the
previous generation round as depicted with equation 2.12 is concatenated
with the received data:

APn = SHA(Tn−1||Dm−(n−1)||...||Dm−1||Dm) (2.8)

2. Truncation: The MSB of the auxiliary pool of the size of the DRNG
security strength are used for the seed buffer:

An = MSBmin(digest size,security strength)(APn) (2.9)

2.2.5 CPU Entropy Source

1. Hashing: If the CPU entropy source provides less than full entropy, a
message digest of the amount of data to be requested from it is calculated:

Ccond = SHA(C1|| ... ||Cm) (2.10)

2. Truncation: If the CPU entropy source provides less than full entropy,
the MSB defined by the requested number of bits (commonly equal to the
security strength of the DRBG) or the applied message digest size, what
ever is smaller, are obtained - the implementation is provided with func-
tion LRNG_get_arch_data_compress – otherwise Cn is the data obtained
directly from the CPU entropy source:

Cn = MSBmin(digest size,security strength)(Ccond) (2.11)
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2.2.6 Temporary Seed Buffer Construction

1. Concatenation: The temporary seed buffer T used to seed the DRNG
at the time n is a concatenation of one or more of the following entropy
source data sets, depending on the compile-time configuration:

(a) the auxiliary pool entropy source A,
(b) the interrupt entropy source buffer E,
(c) the scheduler entropy source buffer S,
(d) the Jitter RNG output J ,
(e) the CPU entropy source output C,
(f) the legacy RNG entropy source output L, and
(g) the current time t

with the implementation is provided with function lrng_fill_seed_buffer:

Tn = An||En||Sn||Jn||Cn||Ln||t (2.12)

2.3 LRNG Architecture
Before going into the details of the LRNG processing, the concept underlying
the LRNG shown in figure 2.1 is provided here.

The entropy derived from the slow entropy sources is collected and accu-
mulated in the entropy pools which contain already compressed entropy data,
supported by the collection pools which contain uncompressed, but only con-
catenated entropy data.

At the time the DRNG shall be seeded, the all entropy pools, any non-
compressed data in the collection pools and the auxiliary pool are processed
with a cryptographic hash function which can be chosen at runtime.

For the entropy pool, if the digest of the hash and the available entropy are
larger than requested by the caller, the digest is truncated to the appropriate
size. For the auxiliary pool, always 256 bits of data are returned irrespective of
the entropy rate of this pool. This ensures that also data that is not credited
with entropy but injected into the LRNG is used to stir the seed for the DRNG.

The DRNG always tries to seed itself with 256 bits of entropy, except dur-
ing boot. In any case, if the entropy sources cannot deliver that amount, the
available entropy is used and the DRNG keeps track on how much entropy it
was seeded with. The entropy implied by the LRNG available in the entropy
pool may be too conservative. To ensure that during boot time all available
entropy from the entropy pool is transferred to the DRNG, the hash function
always generates 256 data bits during boot to seed the DRNG. During boot,
the DRNG is seeded as follows:

1. The DRNG is reseeded from the entropy sources if all entropy sources
collectively have at least 32 bits of entropy available. The goal of this
step is to ensure that the DRNG receive some initial entropy as early as
possible.

2. The DRNG is reseeded from the entropy sources if all entropy sources
collectively have at least 128 bits of entropy available.
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3. The DRNG is reseeded from the entropy sources if all entropy sources
collectively have at least 256 bits of entropy available.

At the time of the reseeding steps, the DRNG requests as much entropy as is
available in order to skip certain steps and reach the seeding level of 256 bits.
This may imply that one or more of the aforementioned steps are skipped.

In all listed steps, the DRNG is (re)seeded with a number of random bytes
from the entropy pool that is at most the amount of entropy present in the
entropy pool. This means that when the entropy pool contains 128 or more bits
of entropy, the DRNG is seeded with that amount of entropy as well.

The LRNG also implements a forced seeding operation. This is performed
when a blocking interface has blocked a request 5 times because the DRNG is
not fully seeded. The forced seeding performs a continuous reseeding of the
DRNG in an atomic operation with existing entropy. This means that a regular
reseeding is triggered repeatedly as often as needed to obtain 256 bits of entropy
to reach the fully seeded level. In this case, the entropy obtained from the
entropy sources is added up. This is permissible because the multiple reseeding
operations are performed while the DRNG is locked, i.e. the DRNG will not
produce output in that time.

Before the DRNG is seeded with 256 bits of entropy in step 3, requests of
random data from the blocking interfaces are not processed.

At runtime the DRNG operates as deterministic random number generator
with the following properties:

• The maximum number of random bytes that can be generated with one
DRNG generate operation is limited to 4096 bytes. When longer ran-
dom numbers are requested, multiple DRNG generate operations are per-
formed. The ChaCha20 DRNG as well as the SP800-90A DRBGs im-
plement an update of their state after completing a generate request for
backward secrecy.

• The DRNG is reseeded with whatever entropy is available, but at least
128 bits (256 bits if SP800-90C compliance is enabled) – in the worst case
where no additional entropy can be provided by the entropy sources, the
DRNG is not re-seeded and continues its operation to try to reseed again
after again the expiry of one of these thresholds:

– If the last reseeding of the DRNG is more than 600 seconds ago3, or
– 220 DRNG generate operations are performed, whatever comes first,

or
– the DRNG is forced to reseed before the next generation of random

numbers if data has been injected into the LRNG by writing data
into /dev/random or /dev/urandom.

3Note, this value will not empty the entropy pool even on a completely quiet system.
Testing of the LRNG was performed on a KVM without fast entropy sources and with a
minimal user space, where only the SSH daemon was running, During the testing, no operation
was performed by a user. Yet, the system collected more than 256 bits of entropy from the
interrupt entropy source within that time frame, satisfying the DRNG reseed requirement.
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The chosen values prevent high-volume requests from user space to cause
frequent reseeding operations which drag down the performance of the
DRNG45.

• If the DRNG was not reseeded for the last 230 DRNG generate opera-
tions – i.e. the reseeding requests discussed in the previous bullets were
unsuccessful – the DRNG reverts back to an unseeded state. This applies
that the DRNG will not produce random numbers when accessed via the
blocking interfaces. In this case, the DRNG behaves like during boot time.

With the automatic reseeding after 600 seconds, the LRNG is triggered to reseed
itself before the first request after a suspend that put the hardware to sleep for
longer than 600 seconds.

2.3.1 Minimally Versus Fully Seeded Level

The LRNG’s DRNG is reseeded when the first 128 bits / 256 bits of entropy are
received during boot as indicated above. The 128 bits level defines that that
the DRNG is considered “minimally” seeded whereas reaching the 256 bits level
is defined as the DRNG is “fully” seeded.

Both seed levels have the following implications:

• Upon reaching the minimally seeded level, the kernel-space callers waiting
for a seeded DRNG via the API calls of either wait_for_random_bytes
is woken up.

• When reaching the fully seeded level, the user-space callers waiting for a
fully seeded DRNG via the getrandom system call or /dev/random are wo-
ken up. Also in-kernel callers waiting with add_random_ready_callback
are woken up. Using the LRNG API of LRNG_get_random_bytes_full,
the caller is waiting synchronously until the fully seeded level is reached.
Finally, in-kernel callers can poll rng_is_initialized which returns true
if the LRNG is fully seeded and initialized.

Note, the initial seeding level with 32 bits is implemented to ensure that early
boot requests are served with random numbers having some entropy, i.e. the
DRNG has some meaningful level of entropy for non-cryptographic use cases as
soon as possible.

2.3.2 Seeding Examples

The following tables provide examples how the seeding is performed by the
LRNG. The tables contain various seeding stages, how much data is injected

4Considering that the maximum request size is 4096 bytes defined by
LRNG_DRNG_MAX_REQSIZE (i.e. each request is segmented into 4096 byte chunks) and at
most 220 requests defined by LRNG_DRNG_RESEED_THRESH can be made before a forced reseed
takes place, at most 4096 · 220 = 4, 294, 967, 296 bytes can be obtained from the DRNG
without a reseed operation.

5After boot, the ChaCha20 DRNG state is also used for the atomic DRNG state. Although
both DRNGs are controlled by separate and isolated objects, the DRNG state is identical.
As the LRNG_DRNG_RESEED_THRESH is enforced local to each DRNG object, the theoretical
maximum number of random bytes the ChaCha20 DRNG state could generate before a forced
reseed is twice the amount listed before – once for the DRNG object and once for the atomic
DRNG object.
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into the DRNG, and finally actions performed by the LRNG at the respective
seeding level.

The following table shows the seeding during boot time with the default
entropy levels for the fast entropy sources as outlined in sections 2.10.1 and
2.9.1. In addition, this table considers the heuristic entropy rate outlined in
equation 3.2 which implies that the time stamp delivered with one interrupt
event provides one bit of entropy.

Seed
Stage

Entropy
source

data bits

Entropy
source

entropy
bits

LRNG behavior

Receipt
of 32
fresh
IRQs

IRQ: 256
Jitter: 256
CPU: 256

IRQ: 32
Jitter: 16
CPU: 8

/dev/random blocked
getrandom(0) blocked

/dev/urandom operational
wait_for_random_bytes blocked

add_random_ready_callback blocked
get_random_bytes operational

Receipt
of 104
fresh
IRQs

IRQ: 256
Jitter: 256
CPU: 256

IRQ: 104
Jitter: 16
CPU: 8

/dev/random blocked
getrandom(0) blocked

/dev/urandom operational
wait_for_random_bytes operational
add_random_ready_callback blocked

get_random_bytes operational
Receipt
of 232
fresh
IRQs

IRQ: 256
Jitter: 256
CPU: 256

IRQ: 232
Jitter: 16
CPU: 8

/dev/random operational
getrandom(0) operational
/dev/urandom operational

wait_for_random_bytes operational
add_random_ready_callback operational

get_random_bytes operational
The next table outlines the runtime reseeding behavior with again assuming

the fast entropy sources have the default entropy levels.
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Seed
Stage

Entropy
source

data bits

Entropy
source

entropy
bits

LRNG behavior

2000
unused
IRQs in
entropy

pool

IRQ: 256
Jitter: 256
CPU: 256

IRQ: 256
Jitter: 16
CPU: 8

/dev/random operational
getrandom(0) operational
/dev/urandom operational

wait_for_random_bytes operational
add_random_ready_callback operational

get_random_bytes operational
104

unused
IRQs in
entropy

pool

IRQ: 104
Jitter: 256
CPU: 256

IRQ: 104
Jitter: 16
CPU: 8

/dev/random operational
getrandom(0) operational
/dev/urandom operational

wait_for_random_bytes operational
add_random_ready_callback operational

get_random_bytes operational
103

unused
IRQs in
entropy

pool

IRQ: 103
Jitter: 256
CPU: 256

IRQ: 103
Jitter: 16
CPU: 8

/dev/random operational
getrandom(0) operational
/dev/urandom operational

wait_for_random_bytes operational
add_random_ready_callback operational

get_random_bytes operational
0 unused
IRQs in
entropy

pool

IRQ: 0
Jitter: 256
CPU: 256

IRQ: 0
Jitter: 16
CPU: 8

/dev/random operational
getrandom(0) operational
/dev/urandom operational

wait_for_random_bytes operational
add_random_ready_callback operational

get_random_bytes operational
The following table outlines the runtime reseeding behavior assuming the

fast entropy sources are configured to deliver zero bits of entropy.
Seed
Stage

Entropy
source

data bits

Entropy
source

entropy
bits

LRNG behavior

2000
unused
IRQs in
entropy

pool

IRQ: 256
Jitter: 256
CPU: 256

IRQ: 256
Jitter: 0
CPU: 0

/dev/random operational
getrandom(0) operational
/dev/urandom operational

wait_for_random_bytes operational
add_random_ready_callback operational

get_random_bytes operational
0 unused
IRQs in
entropy

pool

IRQ: 0
Jitter: 256
CPU: 256

IRQ: 0
Jitter: 0
CPU: 0

/dev/random operational
getrandom(0) operational
/dev/urandom operational

wait_for_random_bytes operational
add_random_ready_callback operational

get_random_bytes operational
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2.3.3 NUMA Systems

To prevent bottlenecks in large systems, the DRNG will be instantiated once
for each NUMA node. The instantiations of the DRNGs happen all at the same
time when the LRNG is initialized.

The question now arises how are the different DRNGs seeded without re-
using entropy or relying on random numbers from a yet insufficiently seeded
LRNG. The LRNG seeds the DRNGs sequentially starting with the one for
NUMA node zero – the DRNG for NUMA node zero is seeded with the approach
of 32/128/256 bits of entropy stepping discussed above. Once the DRNG for
NUMA node 0 is seeded with 256 bits of entropy, the LRNG will seed the DRNG
of node one when having again 256 bits of entropy available. This is followed by
seeding the DRNG of node two after having again collected 256 bits of entropy,
and so on. Figure 2.3 illustrates the seeding strategy showing that each DRNG
instance is freshly seeded with a separate seed buffer.

DRNG
Node 0

DRNG
Node 1

DRNG
Node 2

Figure 2.3: DRNG Instances on NUMA systems with seeding strategy

When producing random numbers, the LRNG tries to obtain the random
numbers from the NUMA node-local DRNG. If that DRNG is not yet seeded,
it falls back to using the DRNG for node zero.

Note, to prevent draining the entropy pool on quiet systems, the time-based
reseed trigger, which is 600 seconds per default, will be increased by 100 seconds
for each activated NUMA node beyond node zero. Still, the administrator is
able to change the default value at runtime.

2.3.4 Flexible Design

Albeit the preceding sections look like the DRNG and the management logic
are highly interrelated, the LRNG code allows for an easy replacement of the
DRNG with another deterministic random number generator. This flexible
design allowed the implementation of the ChaCha20 DRNG if the SP800-90A
DRBG using the kernel crypto API is not desired.

To implement another DRNG, all functions in struct lrng_drng_cb in
“lrng.h” must be implemented. These functions cover the allocation/deallo-
cation of the DRNG as well as its usage. Similarly, all functions in struct
lrng_hash_cb from “lrng.h” must be implemented to provide the the condi-
tioning hash.

The implementations can be changed at runtime. The default implemen-
tation is the ChaCha20 DRNG using a software-implementation of the used
ChaCha20 stream cipher and the SHA-256 hash6 for accessing the entropy pools.

6In case CONFIG_CRYPTO is not selected during the kernel compilation, SHA-1 is used.
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In addition, the LRNG allows the addition of new entropy sources. The
documentation provided in README.hacking.md in the LRNG source code
tree documents how to add a new entropy source.

2.3.5 Covered Design Concerns of Legacy /dev/random

Starting with kernel 5.8, the legacy /dev/random implementation seeds the ex-
ternal random32 PRNG with data directly taken from the fast_pool where that
same data is added to the entropy pool. This implies that data believed to hold
entropy is used twice for different purposes which is considered to be an archi-
tectural weakness. In addition, the random32 PRNG performs a cryptographic
non-secure processing of data which may leak entropy. In this case, the legacy
/dev/random heuristically credits entropy to data that may have no entropy.
The LRNG covers this aspect by only sending data to the random32 PRNG
that is not used by the LRNG. This change has been reverted with 5.10.

Additional concerns regarding the design and implementation of the legacy
/dev/random and their coverage in the LRNG are given in [2] section 4.4.

2.4 LRNG Data Structures
The LRNG uses the following main data structures:

• The data from the interrupt entropy source is processed with a per-CPU
entropy pool. In addition, a per-CPU collection pool that can hold the
concatenated time stamps is maintained. Both are accessed lockless since
the currently executing CPU’s entropy pool and collection pool is used.
During access to the entropy pool, the LRNG though takes a lock since
the entropy pool is also read when the hash is calculated for filling the
seed buffer. As the filling of the seed buffer is very infrequently (see above
for the reseed periods of the DRNG), the lock is hardly contented which
allows the conclusion that the entropy collection operates quasi-lockless.

• The scheduler entropy source also defines per-CPU collection pools like
the interrupt entropy source. However, no entropy pools are maintained
as compression of scheduler-based entropy sources is only performed when
the DRNG shall be (re)seeded. The entire scheduler-based entropy source
operates lock-less.

• The deterministic random number generator data structure for the DRNG
holds the reference to the DRNG instance and the hash instance and
associated meta data needed for its operation. The DRNG is managed
with a separate data structure. When using the DRNG, a full read/write
lock is used to guard (a) against replacement of the DRNG reference while
operating on the DRNG state, and (b) to read/write the DRNG state.
Contrarily when using the hash, only a read-lock is used to guard against
the replacement of the hash reference. This implies that the hash state is
kept on the stack of the calling application.

2.5 Interrupt Processing - LRNG-internal Entropy Source
The LRNG hooks a callback into the bottom half interrupt handler at the same
location where the legacy /dev/random places its callback hook.
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The LRNG interrupt processing callback is a void function that also does
not receive any input from the interrupt handler. That interrupt processing
callback is the hot code path in the LRNG and special care is taken that it is
as short as possible and that it operates without locking.

Figure 2.4 illustrates the interrupt processing performed by the LRNG. The
figure specifies which parts of the interrupt processing execute in IRQ context
and which executes in process context. The operations executed in interrupt
context are all completely listed in this section. All steps executed in process
context are illustrated in section 2.12.

The figure depicts the example when one interrupt arrives on CPU 0. If
an interrupt arrives on another CPU, the same operation is applied, but the
respective CPU-local collection pool and entropy pool is used. The entropy
pools from other CPUs in the figure therefore are filled with the same processing
steps, which, however, are not shown.

Entropy Estim.Entropy Estim.

IRQ

... CPU 0 Collection Pool

Other
Event Data/ GCD & 0xFF
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Hash

64-bit
Cycle
Count

...
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Entropy Pool

Hash Interrupt ES
Seed DataHash

CPU 1
Entropy Pool

Hash
CPU N

Entropy Pool

...

IRQ Context CPU 0

Process Contextif LRNG_CONTINUOUS_COMPRESSION_ENABLED
  IRQ Context
else
  Process Context

32-bit

Figure 2.4: Interrupt Processing

The following processing happens when an interrupt is received and the
LRNG is triggered:

1. A high-resolution time stamp is obtained using the service random_get_entropy
kernel function. This integer value is divided by a GCD to eliminate bits
that do not change. Although that function returns a 64-bit integer, only
the bottom 8 bits, i.e. the fast moving bits, are used for further process-
ing. To ensure fast processing, these 8 bits are concatenated and stored
in the operating CPU’s data collection pool. After the receipt of 1,024
time stamps, the data collection pool with all concatenated time stamps
is inserted into the currently executing CPU’s entropy pool. During boot
time until the LRNG completed the calculation of the GCD, the 32 least
significant bits of the data are directly inserted into the CPU’s entropy
pool. Entropy is contained in the variations of the time of events and its
time delta variations. Figure 2.1 depicts the time stamp array holding the
8-bit time stamp values.

2. The health tests discussed in section 2.5.2 are performed on each received
time stamp where the truncated time stamp value is forwarded to the
health test. Unless 1,024 time stamps have been received, the processing
of an interrupt stops now.
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3. The per-CPU collection pool is added to the same CPU’s entropy pool by
performing a hash update operation. This approach works as the per-CPU
entropy pool is managed as the message digest state. When data of the
per-CPU entropy is to be extracted, a hash final operation is performed
followed by an immediate re-initialization of the state buffer using the
message digest of the previous extraction. This operation is depicted in
figure 2.5 for the entropy pool maintained by CPU 0. The other CPUs
perform the same processing with their independent copy of the collection
pool and the entropy pool. In case the continuous compression support is
disabled, the hash operation is not performed. Instead, the oldest entropy
values in the collection pool are overwritten with the latest entropy value.
In case the continuous compression operation is disabled, the hash update
operation is conducted in process context at the time of obtaining random
numbers from the entropy pool requested to seed the DRNG documented
in section 2.12.

Hash Init

Hash Update

Hash Update

Hash Update
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Hash Update
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Digest CPU1 CPU 1
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Figure 2.5: Collection Pool Processing

4. The LRNG increases the per-CPU counter of the received interrupt events
by the number of healthy interrupts stored in the per-CPU collection pool.
This counter is translated into an entropy statement when the LRNG
wants to know how much entropy is present in the entropy pool. This
counter is also adjusted when reading data from the entropy.

5. If equal or more than /proc/sys/kernel/random/read_wakeup_threshold
healthy bits are received by all per-CPU entropy pools, the wait queue
where readers wait for entropy is woken up. Note, to limit the amount of
wakeup calls if the entropy pool is full, a wakeup call is only performed
after receiving 32 interrupt events. The reason is that the smallest amount
of random numbers generated from the entropy pool 32 bits anyway, i.e.
the initially seeded level.

6. If all DRNG instances are fully seeded, the processing stops. This implies
that only during boot time the next step is triggered. At runtime, the
entropy sources will not trigger a reseeding of the DRNG.
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7. If less than LRNG_IRQ_ENTROPY_BITS healthy bits are received, the pro-
cessing of the LRNG interrupt callback terminates. This value denomi-
nates the number of healthy bits that must be collected to assume this bit
string has 256 bits of entropy. That value is set to a default value of 256
(interrupts). Section 2.5.1 explains this default value. Note, during boot
time, this value is set to 128 bits of entropy.

8. Otherwise, the LRNG triggers a kernel work queue to perform a seeding
operation discussed in section 2.12.

The entropy collection mechanism is available right from the start of the kernel.
Thus even the very first interrupts processed by the kernel are recorded by the
aforementioned logic.

In case the underlying system does not support a high-resolution time stamp,
step 2 in the aforementioned list is changed to fold the following 32 bit values
each into one bit and XOR all of those bits to obtain one final bit:

• IRQ number,

• High 32 bits of the instruction pointer,

• Low 32 bits of the instruction pointer,

• A 32 bit value obtained from a register value – the LRNG iterates through
all registers present on the system.

2.5.1 Entropy Amount of Interrupts

The question now arises, how much entropy is generated with the interrupt en-
tropy source. The current implementation implicitly assumes one bit of entropy
per time stamp obtained for one interrupt7.

When the high-resolution time stamp is not present, the entropy contents
assumed with each received interrupt is divided by the factor defined with
LRNG_IRQ_OVERSAMPLING_FACTOR. With different words, the LRNG needs to
collect LRNG_IRQ_OVERSAMPLING_FACTOR more interrupts to reach the same level
of entropy than when having the high-resolution time stamp. That value is set
to 10 as a default.

With the kernel compile time parameter of CONFIG_LRNG_IRQ_ENTROPY_RATE
the number of interrupts that must be collected to obtain 256 bits of entropy can
be specified. This value is forced by the LRNG to be at least the aforementioned
limit, i.e. 256 interrupts. This value is subject to the increase by the oversam-
pling factor, if no high-resolution timer is found. The entropy value can be al-
tered by setting the kernel command line option of LRNG_es_irq.irq_entropy
if the kernel is compiled with CONFIG_LRNG_RUNTIME_ES_CONFIG.

The entropy of high-resolution time stamps is provided with the fast-moving
least significant bits of a time stamp which is supported by the quantitative
measurement shown in section 3.3. Although only one bit of entropy is assumed
to be delivered with a given time stamp the LRNG uses the 8 least significant

7That value can be changed if the default is considered inappropriate. At compile time, the
value of LRNG_IRQ_ENTROPY_BYTES can be altered. This value defines the number of interrupts
that must be received to obtain an entropy content equal to the security strength of the used
DRNG.
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bits (LSB) of the time stamp to provide a cushion for ensuring that at any given
time stamp there is always at least one bit of entropy collected on all types of
environments.

However, the question may be raised of why not use more data of the time
stamp, i.e. why not using 32 bits or the full 64 bits of the time stamp to
increase that cushion? There main answer is performance. The collection of a
time stamp and its processing with a hash to generate a new entropy pool state
is performed as part of an interrupt handler. Therefore, the performance of the
LRNG in this code section is highly performance-critical. To limit the impact on
the interrupt handler, the LRNG concatenates the 8 LSB of 1,024 time stamps
received by the current CPU before those 1,024 bytes are injected into the per-
CPU entropy pool. The performance of this approach is demonstrated with the
measurements shown in section 6.2. The second aspect is that the higher bits
of the time stamp must always be considered to have zero bits of entropy when
considering the worst case of a skilled attacker. As the LRNG cannot identify
whether it is under attack by a skilled attacker, it always assumes it is under
attack.

The Linux kernel allows unprivileged user space processes to monitor the ar-
rival of interrupts by reading the file /proc/interrupts. Also, assuming a remote
attacker connected to the victim system running the LRNG via a low-latency
network link, the attacker is able to trigger an interrupt via a network packet and
predict the processing of the interrupt and thus the time stamp generation by
the LRNG with a certain degree of accuracy. The LRNG uses a high-resolution
time stamp that executes with nanosecond precision on 1 GHz systems. Lo-
cal attackers via /proc/interrupts as well as remote attackers via low-latency
networks are expected to be measure the occurrence of an interrupt with a mi-
crosecond precision. The distance between a microsecond and a nanosecond
is 210. Thus, when the attacker is assumed to predict the interrupt occurrence
with a microsecond precision and the time stamp operates with nanosecond pre-
cision, 10 bits of uncertainty remains that cannot be predicted by that attacker.
Hence, only these 10 bits can deliver entropy.

To ensure the LRNG interrupt handling code has the maximum performance,
it processes time stamp values with a number of bits equal to a power of two.
Thus, the LRNG implementation uses 8 LSB of the time stamp (after the time
stamp was divided by its GCD).

During boot time, the presence of attackers is considered to be very limited
as no remote access is yet possible and no local attack applications are assumed
to execute. On the other hand, the performance of the interrupt handler is
not considered to be very critical during the boot process. Thus, the LRNG
uses the 32 LSB of the time stamp that is injected into the per-CPU collection
pool when the time stamp is collected – the LRNG still awards this time stamp
one bit of entropy. Once the LRNG completed the calculation of the GCD
the aforementioned runtime behavior of concatenating the 8 LSB of 1,024 time
stamps before mixing them into the per-CPU entropy pool is enabled.

2.5.2 Health Tests

The LRNG implements the following health tests:

• Stuck Test
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• Repetition Count Test (RCT)

• Adaptive Proportion Test (APT)

Those tests are detailed in the following sections.
Please note that these health tests are only performed for the internal entropy

sources. Other entropy sources like the entropy sources feeding the auxiliary
pool, the Jitter RNG, or the CPU-based entropy sources are not covered by
these tests as they are fully self-contained entropy sources where the LRNG
does not have access to the raw noise data and does not include a model of
the entropy source to implement appropriate health tests. The LRNG considers
both as external entropy source. Thus, the user must ensure that either those
other entropy sources implement all health tests as needed or the kernel must
be started such that these entropy sources are credited with zero bits of entropy.
Not crediting any entropy to these other entropy sources can be achieved with
the following kernel configuration options:

• Sources feeding the auxiliary entropy pool: The interface functions to pro-
vide entropy data (add_hwgenerator_randomness or the IOCTL RNDADDENTROPY
have to be invoked with the value 0 for the entropy rate.

• CPU-based entropy source: CONFIG_LRNG_CPU_ENTROPY_RATE=0

• Jitter RNG: CONFIG_LRNG_JENT_ENTROPY_RATE=0

These options ensure that random data from the entropy sources are pulled,
but are not credited with any entropy.

The RCT, and the APT health test are only performed when the kernel
is booted with fips=1 and the kernel detects a high-resolution time stamp
generator during boot.

In addition, the health tests are only enabled if a high-resolution time stamp
is found. Systems with a low-resolution time stamp will not deliver sufficient
entropy for the interrupt entropy source which implies that also the health tests
are not applicable.

Stuck Test The stuck test calculates the first, second and third discrete
derivative of the time stamp to be processed by the per-CPU collection pool.
Only if all three values are non-zero, the received time delta is considered to
be non-stuck. The first derivative calculated by the stuck test verifies that two
successive time stamps are not equal, i.e. are “stuck”. The second derivative
calculates that there is no linear repetitive signal.

The third derivative of the time stamp is considered relevant based on the
following: The entropy is delivered with the variations of the occurrence of
interrupt events, i.e. it is mathematically present in the time differences of
successive events. The time difference, however, is already the first discrete
derivative of time. Now, if the time difference delivers the actual entropy, the
stuck test shall catch that the time differences are not stuck, i.e. the first
derivative of the time difference (or the second derivative of the absolute time
stamp) shall not be zero. In addition, the stuck test shall ensure that the
time differences do not show a linear repetitive signal – i.e. the second discrete
derivative of the time difference (or the third discrete derivative of the absolute
time stamp) shall not be zero.
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Repetition Count Test The LRNG uses an enhanced version of the Rep-
etition Count Test (RCT) specified in SP800-90B [5] section 4.4.1. Instead of
counting identical back-to-back values, the input to the RCT is the counting of
the stuck values during the processing of received interrupt events. The data
that is mixed into the entropy pool is the time stamp. As the stuck result in-
cludes the comparison of two back-to-back time stamps by computing the first
discrete derivative of the time stamp, the RCT simply checks whether the first
discrete derivative of the time stamp is zero. If it is zero, the RCT counter is
increased. Otherwise, the RCT counter is reset to zero.

The RCT is applied with α = 2−30 compliant to the recommendation of
FIPS 140-2 IG 9.8.

During the counting operation, the LRNG always calculates the RCT cut-
off value of C. If that value exceeds the allowed cut-off value, the LRNG will
trigger the health test failure discussed below. An error is logged to the kernel
log that such RCT failure occurred.

This test is only applied and enforced in FIPS mode, i.e. when the kernel
compiled with CONFIG_CONFIG_FIPS is started with fips=1.

Adaptive Proportion Test Compliant to SP800-90B [5] section 4.4.2 the
LRNG implements the Adaptive Proportion Test (APT). Considering that the
entropy is present in the least significant bits of the time stamp, the APT is
applied only to those least significant bits. The APT is applied to the four least
significant bits.

The APT is calculated over a window size of 512 time deltas that are to
be mixed into the entropy pool. By assuming that each time stamp has (at
least) one bit of entropy and the APT-input data is non-binary, the cut-off
value C = 325 as defined in SP800-90B section 4.4.2.

This test is only applied and enforced in FIPS mode, i.e. when the kernel
compiled with CONFIG_CONFIG_FIPS is started with fips=1.

Runtime Health Test Failures If either the RCT, or the APT health test
fails irrespective whether during initialization or runtime, the following actions
occur:

1. The entropy of the entire entropy pool is invalidated.

2. All DRNGs are reset which imply that they are treated as being not seeded
and require a reseed during next invocation.

3. The SP800-90B startup health test are initiated with all implications dis-
cussed in section 2.5.2. That implies that from that point on, new events
must be observed and its entropy must be inserted into the entropy pool
before random numbers are calculated from the entropy pool.

SP800-90B Startup Tests The aforementioned health tests are applied to
the first 1,024 time stamps obtained from interrupt events. In case one error is
identified for either the RCT, or the APT, the collected entropy is invalidated
and the SP800-90B startup health test is restarted.

As long as the SP800-90B startup health test is not completed, all LRNG
random number output interfaces that may block will block and not generate
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any data. This implies that only those potentially blocking interfaces are defined
to provide random numbers that are seeded with the interrupt entropy source
being SP800-90B compliant. All other output interfaces will not be affected by
the SP800-90B startup test and thus are not considered SP800-90B compliant.

To summarize, the following rules apply:

• SP800-90B compliant output interfaces

– /dev/random

– getrandom(2) system call when called with a flag that does not in-
clude GRND_INSECURE

– get_random_bytes as well as LRNG_get_random_bytes kernel-internal
interface when being triggered by the callback registered with add_random_ready_callback

– LRNG_get_random_bytes_full kernel-internal interface

• SP800-90B non-compliant output interfaces

– /dev/urandom

– getrandom(2) system call when called with GRND_INSECURE

– get_random_bytes kernel-internal interface called directly
– randomize_page kernel-internal interface
– get_random_u32 and get_random_u64 kernel-internal interfaces
– get_random_u32_wait, get_random_u64_wait, get_random_int_wait,

and get_random_long_wait kernel-internal interfaces

2.6 HID Event Processing
The LRNG picks up the HID event numbers of each HID event such as a key
press or a mouse movement by implementing the add_input_randomness func-
tion. The following processing is performed when receiving an event:

1. The LRNG checks if the received event value is identical to the previous
one. If so, the event is discarded to prevent auto-repeats and the like to
be processed.

2. The event values are concatenated to the per-CPU collection pool for
interrupts as well. This is depicted in figure 2.4 where the HID data is
processed as the “other event data”.

The LRNG does not credit any entropy for the HID event values.

2.7 Scheduler Events - LRNG-internal Entropy Source
The LRNG hooks into the scheduling operation of the Linux kernel which is
triggered every time a context switch is performed as initiated by the scheduler.
The LRNG handling of a scheduling event is depicted with figure 2.6.
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Figure 2.6: Scheduler-event Processing

When a context switch occurs, the LRNG callback is invoked which obtains
a high-resolution time stamp that is concatenated into the CPU-local collection
pool. The processing of the time stamp is identical to the interrupt entropy
source as outlined in section 2.5. When the CPU-local collection pool is full,
the oldest entries are overwritten by the latest time stamp.

At the time the DRNG shall be (re)seeded, a message digest of each scheduler
per-CPU collection pool is calculated to fill the per-CPU scheduler entropy pool
as outlined in figure 2.7. This figure shows that first the collection pool is
inserted into a per-CPU scheduler entropy pool which then is inserted into the
temporary seed buffer. This guarantees that “unused entropy” is appropriately
protected by the per-CPU scheduler entropy pool. The data processing concepts
between the scheduler ES and the interrupt ES are identical when comparing
the figures in this section to section 2.5.
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Figure 2.7: Scheduler per-CPU Entropy Pool Management

This entire message digest calculation is performed in the process context.
Therefore, the hashing operation is not performed as part of the scheduling op-
eration. The message digest is truncated to the entropy available in all sched-
uler per-CPU collection pools or the requested amount of entropy, whatever is
smaller. Note, the requested amount of entropy is always smaller or equal to
the size of the message digest of the used hashing algorithm.

As a side note, the scheduler entropy source potentially has some relationship
with the IRQ entropy source because an IRQ ma trigger a scheduler event (e.g.
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with the flag TIF_NEED_RESCHED). Therefore, both entropy sources cannot be
used at the same time and credit entropy to both. It is permissible to use both,
but only one is credited with entropy.

2.7.1 Entropy Amount of Scheduling Events

The discussion of the entropy content of interrupt events in section 2.5.1 applies
to the scheduler-based entropy. The only difference is the use of a different
compile-time entropy value of CONFIG_LRNG_SCHED_ENTROPY_RATE.

2.7.2 Health Tests

The health tests documented in section 2.5.2 are applied to the scheduler entropy
source as well. The LRNG ensures that the health tests for the interrupt and
the scheduler entropy sources are strictly separated. This separation applies to
the SP800-90B as well.

2.8 Auxiliary Entropy Pool - LRNG-external Entropy Sources
The LRNG also supports obtaining entropy from the following data sources and
entropy sources that are external to the LRNG. The data is injected into the
auxiliary pool.

During the reseeding operation of the DRNG, any user-space entropy provider
waiting via select(2) or kernel space entropy provider using the add_hwgenerator_randomness
API call are triggered to provide one buffer full of data. This data is mixed into
the auxiliary pool. This approach shall ensure that the LRNG-external entropy
sources may provide entropy at least once each DRNG reseed operation.

2.8.1 Kernel Hardware Random Number Generator Drivers

Drivers hooking into the kernel HW-random framework can inject entropy di-
rectly into the auxiliary pool. Those drivers provide a buffer to the entropy
pool and an entropy estimate in bits. The auxiliary pool uses the given size of
entropy at face value. The interface function of add_hwgenerator_randomness
is offered by the LRNG.

2.8.2 Injecting Data From User Space

User space can take the following actions to inject data into the DRNG:

• When writing data into /dev/random or /dev/urandom, the data is added
to the auxiliary pool and triggers a reseed of the DRNGs at the time the
next random number is about to be generated. The LRNG assumes it has
zero bits of entropy.

• When using the privileged IOCTL of RNDADDENTROPY with /dev/random,
the caller can inject entropic data into the auxiliary pool and define the
amount of entropy associated with that data.
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2.8.3 Auxiliary Pool

The auxiliary pool is maintained as a separate entropy source that eventually
is concatenated with all other entropy sources in compliance with SP800-90C.

The auxiliary pool is processed with the available hash as follows:

1. Data is inserted the same way as data is added into the per-CPU entropy
pools. The auxiliary pool technically is the message digest state where
new data is inserted into the pool by performing a hash update operation.

2. When entropy is to be extracted from the auxiliary pool, a hash final oper-
ation is performed which is immediately followed by a hash init operation
to initialize the hash context for new data.

3. The generated message digest is truncated to the amount of data requested
by the DRNG (e.g. either 256 or 384 bits) and returned to the caller. Note,
the auxiliary pool output is not truncated to the amount of entropy the
data contains because the entropy provider may add data to the auxiliary
pool without entropy, e.g. by simply writing to /dev/random. Thus, it
may be possible that the auxiliary pool contains zero bits of entropy but
yet contains data that should be used to “stir” the DRNG state.

Figure 2.8 illustrates the auxiliary pool operation for the case when user space in-
serts two separate buffers and a kernel driver uses the add_hwgenerator_randomness
function.
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Figure 2.8: Auxiliary Pool Processing

In addition, the LRNG maintains an entropy estimator for the auxiliary pool
counting the received entropy. The entropy estimator is capped to a maximum
of the digest size of the used hash as this hash cannot maintain more entropy.

The auxiliary pool message digest is copied into the seed buffer when gener-
ating random numbers to seed the DRNG. The entire seed buffer is mixed back
into the auxiliary pool for backward secrecy as shown in figure 2.8. The copy
operation as well as the backtracking operation is atomic with respect to the
auxiliary pool. This implies that both operations will always be fully completed
before the next operation can commence. This ensures that the same auxiliary
pool state can only be used once for a given seeding operation. Thus, both,
the entropy pool and the auxiliary pool, are simultaneously used as noise data
provider to seed the DRNG.
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The entropy estimator is decreased by the amount of data read via the
message digest.

2.9 Jitter RNG - LRNG-external Entropy Source
The Jitter RNG is treated as an external entropy source which is requested for
random bits at the time the DRNG shall be seeded.

To comply with [5] section 4.3, the LRNG treats a health test error of the
Jitter RNG as an intermittent error. The permanent error is handled the same
way as outlined in section 3.3.37. Thus the rationale of section 3.3.37 applies to
the Jitter RNG entropy source as well.

The Jitter RNG is by default used in an asynchronous operation where a
separate kernel thread fills a buffer with entropy data. When the LRNG requires
entropy it obtains the data from the buffer instead of waiting for the Jitter RNG
to complete its operation. If the buffer is about to run out of data, the mentioned
thread generates new data.

2.9.1 Entropy of CPU Jitter RNG Entropy Source

The CPU Jitter RNG entropy source is assumed provide 16th bit of entropy per
generated data bit. Albeit studies have shown that significant more entropy is
provided by this entropy source, a conservative estimate is applied.

The entropy value can be altered by changing the kernel configuration option
of CONFIG_LRNG_JENT_ENTROPY_RATE.

In addition, the value can be changed by writing an integer into /sys/mod-
ule/LRNG_es_jent/parameters/jent_entropy or by setting the kernel com-
mand line option of LRNG_es_jent.jent_entropy if the kernel is compiled with
CONFIG_LRNG_RUNTIME_ES_CONFIG.

2.10 CPU-base Entropy Source - LRNG-external Entropy
Source

The CPU-based entropy source is treated as an external entropy source which
is requested for random bits at the time the DRNG shall be seeded. Depending
on the underlying CPU, only one such source is available like RDSEED on
Intel x86 (or RDRAND if RDSEED is not available), the POWER CPU DARN
instruction, etc.

Depending whether the the CPU entropy source is documented to full en-
tropy, the following data collection methods are applied. This approach is or-
thogonal to the amount of entropy the LRNG awards to the CPU entropy
source.

• CPU entropy source provides full entropy: The CPU entropy source is
queried for the amount of data which is stored in the temporary seed
buffer.

• CPU entropy source provides less than full entropy: For this entropy
source, the LRNG contains the information about how much data must
be fetched from the CPU entropy source to get full entropy. The required
amount of data is pulled from the CPU entropy source and conditioned
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with the hash currently in use by the LRNG. The calculated message di-
gest is truncated to the requested amount of data which is stored in the
temporary seed buffer.

2.10.1 Entropy of CPU Entropy Source

The entropy source of the CPU is assumed to have one 32th of the generated
data size – 8 bits of entropy. The reason for that conservative estimate is
that the design and implementation of those entropy sources is not commonly
known and reviewable. The entropy value can be altered by changing the kernel
configuration option of CONFIG_LRNG_CPU_ENTROPY_RATE.

In addition, the value can be changed by writing an integer into /sys/-
module/LRNG_es_cpu/parameters/cpu_entropy or by setting the kernel com-
mand line option of LRNG_es_cpu.cpu_entropy if the kernel is compiled with
CONFIG_LRNG_RUNTIME_ES_CONFIG.

2.11 Legacy RNG Entropy Source - LRNG-external En-
tropy Source

The LRNG offers the use of the legacy RNG as an entropy source. This requires
the compilation of the random.c along with the LRNG. The legacy RNG derives
its entropy from sampling of interrupts. Therefore, the LRNG interrupt entropy
source is not enabled if the legacy RNG entropy source is enabled, and vice versa.

The legacy RNG is queried for random numbers using the get_random_bytes
function implemented in random.c.

2.11.1 Entropy of Legacy RNG Entropy Source

When the legacy RNG is enabled, the LRNG applies the entropy rate defined
at compile time with CONFIG_LRNG_LEGACY_RNG_ENTROPY_RATE which is a value
between 0 and 256 bits of entropy when 256 data bits are pulled from the legacy
RNG.

If the kernel is booted with FIPS mode enabled, i.e. the kernel command
line contains “fips=1”, the legacy RNG entropy source’s entropy rate is set to
zero. The reason is that the legacy RNG is known to not comply with FIPS
140 rules like SP800-90B and thus must be assumed to provide no entropy.

2.12 DRNG Seeding Operation
The seeding operation obtains random data from all available entropy sources.

The (re)seeding logic tries to obtain 256 bits of entropy from the entropy
sources. However, if less entropy can only be delivered, the DRNG reseeding
is only performed if at least 128 bits of entropy collectively from all entropy
sources can be obtained.

For efficiency reasons, the seeding operation uses a seed buffer depicted in
figure 2.1 that is the following set of blocks of 256 bits each. If SP800-90C
compliance is enabled, the initial seeding of the DRNG is seeded with a seed
buffer that pulls 384 bits in the following blocks. Each block is dedicated to an
entropy source. As each entropy source can be disabled at compile time, the

36



different bullets in the following list only applies if the corresponding entropy
source is enabled.

1. One block is filled with the message digest from the auxiliary pool.

2. One block contains the message digest calculated from all per-CPU in-
terupt entropy pools as depicted in figure 2.4 That buffer receives as much
data from the hash operation as entropy can be pulled from the entropy
pools. In the worst case when no new interrupts are received a zero buffer
will be injected into the DRNG. This is performed by iterating over all
per-CPU entropy pools and:

(a) Perform a hash update operation to inject the current content of the
per-CPU collection pool into the per-CPU entropy pool.

(b) Perform a hash final operation on the per-CPU entropy pool to obtain
the message digest.

(c) That message digest is used to re-initialize the per-CPU entropy pool
with a hash init and hash update operation to ensure backward se-
crecy.

(d) Also, the message digest is fed into the hash operation to collect the
output from all entropy pools.

Once the message digest from all is obtained, it is truncated to the amount
of entropy present in all entropy pools.

3. Another block is filled with the message digest of all scheduler per-CPU
entropy pools.

4. One block is filled with the data from the legacy RNG entropy source.

5. The next block is filled by the Jitter RNG entropy source.

6. Finally, a block is filled by the fast entropy source of the CPU entropy
source.

Finally, also a 32 bit time stamp indicating the time of the request is mixed into
the DRNG. That time stamp, however, is not assumed to have entropy and is
only there to further stir the state of the DRNG.

The filled seed buffer is handed to the DRNG as a seed string. In addition,
the seed buffer is inserted back into the auxiliary pool for backward secrecy.
The seed buffer will not alter the entropy estimation of the auxiliary pool.

2.12.1 DRNG May Become Not Fully Seeded

The LRNG maintains a counter for each DRNG instance how many generate
operation are performed without performing a reseed that has full entropy. If
this counter exceeds the threshold of 230 generate operations, i.e. the DRNG
did not receive a seed with full entropy for that many generate operations, the
DRNG is set to not fully seeded. This setting implies that the DRNG instance
will not be used any more for generating random numbers until the LRNG
received sufficient entropy to reseed the DRNG with full entropy.

If the DRNG that becomes not fully seeded is the initial DRNG instance
that was seeded during boot time as outlined in section 2.3.1, the entire LRNG
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is marked as not operational. This setting blocks all blocking interfaces just like
during boot time when the LRNG is not yet fully seeded.

The LRNG automatically tries to recover from it when it received sufficient
entropy.

2.13 Cryptographic Primitives Used By LRNG
The following subsections explain the cryptographic primitives that may be used
by the LRNG.

2.13.1 DRBG

If the SP800-90A DRBG implementation is used, the default DRBG used by the
LRNG is the CTR DRBG with AES-256. The reason for the choice of a CTR
DRBG is its speed. The source code allows the use of other types of DRBG by
simply defining a DRBG reference using the kernel crypto API DRBG string –
see the top part of the source code for examples covering all types of DRBG.

All DRNGs are always instantiated with the same DRNG type.
The implementation of the DRBG is taken from the Linux kernel crypto

API. The use of the kernel crypto API to provide the cipher primitives allows
using assembler or even hardware-accelerator backed cipher primitives. Such
support should relieve the CPU from processing the cryptographic operation as
much as possible.

The input with the seed and re-seed of the DRBG has been explained above
and does not need to be re-iterated here. Mathematically speaking, the seed and
re-seed data obtained from the entropy sources and the LRNG external sources
are mixed into the DRBG using the DRBG “update” function as defined by
SP800-90A.

The DRBG generates output with the DRBG “generate” function that is
specified in SP800-90A. The DRBG used to generate two types of output that
are discussed in the following subsections.

/dev/urandom and get_random_bytes Users that want to obtain data via
the /dev/urandom user space interface or the get_random_bytes in-kernel API
are delivered data that is obtained from the DRNG “generate” function. I.e.
the DRNG generates the requested random numbers on demand.

Data requests on either interface is segmented into blocks of maximum 4096
bytes. For each block, the DRNG “generate” function is invoked individually.
According to SP800-90A, the maximum numbers of bytes per DRBG “generate”
request is 219 bits or 216 bytes which is significantly more than enforced by the
LRNG.

In addition to the slicing of the requests into blocks, the LRNG maintains
a counter for the number of DRNG “generate” requests since the last reseed.
According to SP800-90A, the number of allowed requests before a forceful reseed
is 248 – a number that is very high. The LRNG uses a much more conservative
threshold of 220requests as a maximum. When that threshold is reached, the
DRBG will be reseeded by using the operation documented in section 2.12 before
the next DRNG “generate” operation commences.
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The handling of the reseed threshold as well as the capping of the amount of
random numbers generated with one DRNG “generate” operation ensures that
the DRNG is operated compliant to all constraints in SP800-90A.

/dev/random and lrng_get_random_bytes_full The random numbers to
be generated for /dev/random as well as LRNG_get_random_bytes_full are
defined to have a special property: it only provides data once at least 256 bits
of entropy have been collected by the LRNG. In addition, the LRNG must be
fully initialized before random numbers are generated, including the completion
of the SP800-90B heath test if entropy from internal entropy sources is gathered.

2.13.2 ChaCha20 DRNG

If the kernel crypto API support and the SP800-90A DRBG is not desired,
the LRNG uses the standalone C implementations for ChaCha20 to provide a
DRNG. In addition, the standalone SHA-256 C implementation is used to read
the entropy pool.

The ChaCha20 DRNG is implemented with the components discussed in the
following section. All of those components rest on a state defined by [3], section
2.3.

The operation of the ChaCha20 DRNG can be characterized with figure 2.9.
This figure outlines the initialization of the DRNG, its seeding using the state
update operation and the invocation of one generate operation that is requested
to obtain more than 512 bits of data.
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State Update Function The state update function’s purpose is to update
the state of the ChaCha20 DRNG. That is achieved by

1. generating one output block of ChaCha20,

2. partition the generated ChaCha20 block into two key-sized chunks,

3. and XOR both chunks with the key part of the ChaCha20 state.

In addition, the nonce part of the state is incremented by one to ensure the
uniqueness requirement of [3] chapter 4.

Seeding Operation The seeding operation processes a seed of arbitrary lengths.
The seed is segmented into ChaCha20 key size chunks which are sequentially
processed by the following steps:

1. The key-size seed chunk is XORed into the ChaCha20 key location of the
state.

2. This operation is followed by invoking the state update function.

3. Repeat the previous steps for all unprocessed key-sized seed chunks.

If the last seed chunk is smaller than the ChaCha20 key size, only the available
bytes of the seed are XORed into the key location. This is logically equivalent
to padding the right side of the seed with zeroes until that block is equal in size
to the ChaCha20 key.

The invocation of the state update function is intended to eliminate any
potentially existing dependencies between the seed chunks.

Generate Operation The random numbers from the ChaCha20 DRNG are
the data stream produced by ChaCha20, i.e. without the final XOR of the
data stream with plaintext. Thus, the DRNG generate function simply invokes
the ChaCha20 to produce the data stream as often as needed to produce the
requested number of random bytes.

After the conclusion of the generate operation, the state update function is
invoked to ensure enhanced backward secrecy of the ChaCha20 state that was
used to generate the random numbers.

2.13.3 PRNG Registered with Linux Kernel Crypto API

The LRNG supports an arbitrary PRNG registered with the Linux kernel crypto
API, provided its seed size is either 32 bytes, 48 bytes or 64 bytes. To bring
the seed data to be injected into the PRNG into the correct length, SHA-256,
SHA-384 or SHA-512 is used, respectively.

2.14 get_random_bytes in Atomic Contexts
The in-kernel API call of get_random_bytes may be called in atomic context
such as interrupts or spin locks. On the other hand, the kernel crypto API may
sleep during the cipher operations used for the SP800-90A DRBG or the kernel
crypto API PRNGs. The sleep would violate atomic operations.
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This issue is solved in the LRNG with the following approach: The boot-
time DRNG provided with the ChaCha20 DRNG and a compile-time allocated
memory for its context will never be released even when switching to another
PRNG. The ChaCha20 DRNG can be used in atomic contexts because it never
causes operations that violate atomic operations.

When switching the DRNG from ChaCha20 to another implementation,
the ChaCha20 DRNG state of the ChaCha20 DRNG is left to continue serv-
ing as a random number generator in atomic contexts. When the caller uses
get_random_bytes the still present ChaCha20 DRNG is used to serve that re-
quest instead of the current DRNG. When using the in-kernel API of lrng_get_random_bytes_full,
the caller gets access to the selected DRNG type. However, the caller must be
able to handle the fact that this API call can sleep.

The seeding operation of the “atomic DRNG”, however, cannot be triggered
while get_random_bytes is invoked, because the hash operation used for the
hash call to generate random numbers from the entropy pool could be switched
to the kernel crypto API and thus could sleep. To circumvent this issue, the
seeding of the atomic DRNG is performed when a DRNG is seeded. After the
DRNG is seeded and the atomic DRNG is in need of reseeding based on the
reseed threshold, the time since last reseeding or a forced reseed, a random
number is generated from that DRNG and injected into the atomic DRNG.

Thus to summarize, the kernel function get_random_bytes always accesses
the “atomic DRNG” whereas the function lrng_get_random_bytes_full ac-
cesses the DRNG instances that are allocated by the switchable DRNG support.
This implies that lrng_get_random_bytes_full must be expected to sleep.

2.15 LRNG External Interfaces
The following LRNG interfaces are provided:

add_interrupt_randomness This function is to be hooked into the interrupt
handler to trigger the LRNG interrupt entropy source operation.

add_input_randomness This function is called by the HID layer to stir the
entropy pool with HID event values.

get_random_bytes In-kernel equivalent to /dev/urandom. get_random_bytes()
is needed for keys that need to stay secret after they are erased from the
kernel. For example, any key that will be wrapped and stored encrypted.
And session encryption keys: we’d like to know that after the session is
closed and the keys erased, the plaintext is unrecoverable to someone who
recorded the ciphertext. This function is appropriate for all in-kernel use
cases. However, it will always use the ChaCha20 DRNG.

lrng_get_random_bytes_full This function purpose is identical to get_random_bytes.
The difference is that this function provides access to all features of the
LRNG including to switchable DRNGs. In addition, it guarantees that
the LRNG is fully seeded and fully initialized before random numbers
are generated. Yet, this function may sleep and thus is inappropriate for
atomic contexts.

lrng_get_random_bytes_min This function purpose is identical to get_random_bytes.
The difference is that this function provides access to all features of the
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LRNG including to switchable DRNGs. In addition, it guarantees that
the LRNG is minimally seeded. Though, it is not guaranteed that the
LRNG is fully initialized yet, specifically it is not guaranteed that the
SP800-90C oversampling is applied. Yet, this function may sleep and thus
is inappropriate for atomic contexts.

lrng_get_random_bytes_pr This function purpose is identical to get_random_bytes.
The difference is that this function provides access to all features of the
LRNG including to switchable DRNGs. In addition, it guarantees that
the LRNG is fully initialized before random numbers are generated. Also,
immediately before the generation of random bits, the DRNG is reseeded
from the entropy sources and will only return as many random bits as
entropy was received during the reseed. Yet, this function may sleep and
thus is inappropriate for atomic contexts.

lrng_get_seed This function accesses the entropy sources to return a copy of
the temporary seed buffer to the caller. The difference between lrng_get_seed
and lrng_get_random_* APIs can be compared to the difference between
RDSEED and RDRAND instructions from the Intel CPU.

get_random_bytes_arch In-kernel service function to safely call CPU entropy
sources directly and ensure that the LRNG is used as a fallback if the
CPU entropy source is not available.

add_hwgenerator_randomness Function for the HW RNG framework to fill
the LRNG with entropy.

add_random_ready_callback Register a callback function that is invoked when
the LRNG is fully seeded.

del_random_ready_callback Delete the registered callback.

get_random_[u32|u64|int|long] These are produced by a cryptographic RNG
seeded from get_random_bytes, and so do not deplete the entropy pool as
much. These are recommended for most in-kernel operations if the result
is going to be stored in the kernel8.
Specifically, the get_random_int() family do not attempt to do “anti-
backtracking”. If you capture the state of the kernel (e.g. * by snap-
shotting the VM), you can figure out previous get_random_int() return
values. But if the value is stored in the kernel anyway, this is not a prob-
lem.
It is safe to expose get_random_int() output to attackers (e.g. as * net-
work cookies); given outputs 1..n, it’s not feasible to predict outputs
0 or n+1. The only concern is an attacker who breaks into the ker-
nel later; the get_random_int() engine is not reseeded as often as the
get_random_bytes() one.
For network ports/cookies, stack canaries, PRNG seeds, address space
layout randomization, session authentication keys, or other applications

8This functionality discussion is taken from a patch set sent to the Linux kernel mailing
list.
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where the sensitive data is stored in the kernel in plaintext for as long as
it’s sensitive, the get_random_int() family is just fine.
Consider ASLR. We want to keep the address space secret from an outside
attacker while the process is running, but once the address space is torn
down, it’s of no use to an attacker any more. And it’s stored in kernel data
structures as long as it’s alive, so worrying about an attacker’s ability to
extrapolate it from the get_random_int() DRNG is silly.
Even some cryptographic keys are safe to generate with get_random_int().
In particular, keys for SipHash are generally fine. Here, knowledge of the
key authorizes you to do something to a kernel object (inject packets to a
network connection, or flood a hash table), and the key is stored with the
object being protected. Once it goes away, we no longer care if anyone
knows the key.

wait_for_random_bytes With this function, a synchronous wait until the DRNG
is minimally seeded is implemented inside the kernel. This function is used
to implement the wait_get_random_[u32|u64|int|long] functions which
turn the aforementioned get_random_[u32|u64|int|long] functions into
potentially sleeping functions.

prandom_u32 For even weaker applications, see the pseudorandom generator
prandom_u32(), prandom_max(), and prandom_bytes(). If the random
numbers aren’t security-critical at all, these are far cheaper. Useful for
self-tests, random error simulation, randomized backoffs, and any other
application where you trust that nobody is trying to maliciously mess
with you by guessing the “random” numbers.

/dev/random User space interface to provide random data with full entropy –
read function may block during boot time. /dev/random behaves identical
to the getrandom(2) system call. When opening the device with O_SYNC,
the behavior discussed for lrng_get_random_bytes_pr is applied.

/dev/urandom User space interface to provide random data from a constantly
reseeded DRNG – the read function will generate random data on demand.
It provides access to a DRNG executing without prediction resistance as
defined in SP800-90A but is subject to regular re-seeding. Note, the buffer
size of the read requests should be as large as possible, up to 4096 bits to
provide a fast operation. See table 3 for an indication of how important
that factor is.

/proc/sys/kernel/random/poolsize Size of the entropy pool in bits. The
value shows the size of the auxiliary entropy pool, i.e. the entropy pool
that can be managed from user space. Thus, the available pool size is
calculated by (hash digestsize).

/proc/sys/kernel/random/entropy_avail Amount of entropy present into
the into the auxiliary pool.

/proc/sys/kernel/random/write_wakeup_threshold When entropy_avail
falls below that threshold, suppliers of entropy are woken up. This value
is given in bits.
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/proc/sys/kernel/random/boot_id Unique UUID generated during boot.

/proc/sys/kernel/random/uuid Unique UUID that is re-generated during
each request.

/proc/sys/kernel/random/urandom_min_reseed_secs Number of sec-
onds after which the DRNG will be reseeded. The default is 600 seconds.
Note, this value can be set to any positive integer, including zero. When
setting this value to zero, the DRNG tries to reseed from the entropy pool
before every generate request. I.e. the DRNG in this case acts like a
DRNG with prediction resistance enabled as defined in [1].

/proc/lrng_type String referencing the DRNG type and the security strength
of the DRNG. It also contains a hint whether the LRNG operates SP800-
90B compliant, a boolean indicating whether the DRNG is fully seeded
with entropy equal to the DRNG security strength, a boolean indicating
whether the DRNG is seeded the minimum entropy of 128 bits.

/sys/module/lrng_drng/parameters/max_wo_reseed Interface to read
the maximum number of DRNG generate operations without receiving re-
seed that contains full entropy. This value can be set with lrng_drng.max_wo_reseed
kernel command line option. This interface is only available when the ker-
nel configuration option of CONFIG_LRNG_RUNTIME_MAX_WO_RESEED is set.

/sys/module/lrng_selftest/parameters/selftest_status Querying the sta-
tus and restarting the LRNG self tests - see section 2.16 for details.

/sys/kernel/debug/lrng_testing/* Virtual files providing test interfaces as
documented in section 2.17.

/sys/module/lrng_testing/parameters/* Virtual files providing test in-
terfaces as documented in section 2.17.

/sys/module/lrng_es_irq/parameters/irq_entropy Interface to read the
number of interrupts required to obtain 256 bits of entropy. See sec-
tion 2.5.1 for details how to adjust it.

/sys/module/lrng_es_cpu/parameters/cpu_entropy Interface to adjust
entropy estimation from CPU entropy source. See section 2.10.1 for de-
tails.

/sys/module/lrng_es_jent/parameters/jent_entropy Interface to ad-
just entropy estimation from Jitter RNG entropy source. See section 2.9.1
for details.

/sys/module/lrng_es_irq/parameters/lrng_pcpu_continuous_compression
Interface is only present if the LRNG is compiled with
CONFIG_LRNG_SWITCHABLE_CONTINUOUS_COMPRESSION. This interface al-
lows reading the state whether the continuous compression operation is
enabled. During boot time, this option may be used to either enable
or disable the continuous compression operation. For details about the
continuous compression operation, see section 2.2.
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/sys/module/lrng_es_mgr/parameters/ntg.1 Interface is only present
of the LRNG is compiled with CONFIG_LRNG_AIS2031_NTG1_SEEDING_STRATEGY.
This interface is read-only and shows whether the German AIS20/31
NTG.1 (2022) compliance is enabled. See section 5.3.1 for details on such
configuration.

IOCTLs are implemented as documented in random(4).

2.15.1 LRNG Interface to Linux Kernel Crypto API

The LRNG offers a kernel module to register with the kernel crypto API random
number generator framework. This allows the LRNG to be used via this frame-
work. It registers the name “stdrng” with the highest priority which implies
that the LRNG would be used as default by this framework.

This registration also allows the LRNG to be accessed by user space via the
AF_ALG interface wrapped by the libkcapi user space library.

The LRNG registers the interface using the function lrng_get_random_bytes_full
guaranteeing that only random numbers are generated once the LRNG is fully
seeded and fully initialized.

2.15.2 LRNG Interface to Hardware Random Number Generator
Framework

In addition, the LRNG offers a kernel module to register with the kernel’s
hardware random number generator framework. Using this framework, the
LRNG can be accessed by user space via /dev/hwrng.

The LRNG registers the interface using the function lrng_get_random_bytes_full
guaranteeing that only random numbers are generated once the LRNG is fully
seeded and fully initialized.

2.15.3 LRNG Device File

The device file of /dev/lrng behaves identically to the /dev/random device file
including read/write operations, sleeping on it with the select(2) system call
or using all IOCTLs defined for /dev/random. This file is intended for the
case where the legacy RNG is still compiled but user space shall be capable of
accessing the LRNG with all its properties.

The output of the file uses the function lrng_get_random_bytes_full guar-
anteeing that only random numbers are generated once the LRNG is fully seeded
and fully initialized. When opening the device file with O_SYNC, it behaves like
lrng_get_random_bytes_pr discussed before.

2.16 LRNG Self-Tests
When compiling the LRNG with CONFIG_LRNG_SELFTEST, the following self-
tests are performed during startup of the kernel covering all deterministic oper-
ations that are vital to collect and maintain entropy:

• The hash function used to obtain data from the entropy pool is tested.
The power-on self test vector is taken from crypto/testmgr.h for the
hash known answer test using the string “abc” as input.
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• The ChaCha20 DRNG is tested by seeding its state, generating random
numbers, and comparing them with expected data. The standalone user
space ChaCha20 DRNG not only allows studying of the LRNG ChaCha20
DRNG in user space, but is also used to generate the known answers.

• The operation to store time stamps in the collection pool is tested by
injecting integers in that array using the management functions and com-
paring the array content with expected values. The expected values for
the array operation are generated during compile time in the function
lrng_data_process_selftest.

All self tests are performed such that they do not have an impact on the regular
operation of the LRNG by using separate memory locations processed by the
tested deterministic operations.

All individual self tests must pass to indicate that the LRNG is successfully
tested. If one self test fails, at least a warning message is printed If the kernel
compilation option CONFIG_LRNG_SELFTEST_PANIC is enabled, the kernel will
crash if a self test fails.

The status of the self-tests can be queried by reading the file
/sys/module/lrng_selftest/parameters/selftest_status. If that file shows
0, all self-tests passed successfully. Otherwise at least one self-test failed. Writ-
ing any value into that file causes the self-tests to be repeated.

Additional self-tests that support the LRNG are:

• The SP800-90A DRBG is self-tested by the Linux kernel crypto API test
manager during instantiation.

• When using a PRNG the LRNG kernel module lrng_drng_kcapi.ko, its
self-test is driven by the Linux kernel crypto API test manager.

• The raw noise source of the interrupt timing is tested at runtime with at
least the stuck test. In addition the SP800-90B start-up and runtime tests
discussed in section 2.5.2 are performed if they are enabled.

With these tests, all aspects of the LRNG that are vital to the entropy man-
agement and random number generation are self-tested during power-up or at
runtime.

2.17 LRNG Test Interfaces
During kernel compilation, the following interfaces may be enabled allowing
direct access to non-deterministic aspects. It is not advisable to enable these
interfaces for production systems. Yet, these interfaces are considered to be
protected against misuse by allowing only the root user to access them. In
addition, any data obtained through these interfaces is not used by the LRNG
to feed the entropy pool. Thus, even when leaving these interfaces enabled on
production systems, the impact on security is considered to be limited.

• Interrupt Entropy Source:

– The interface /sys/kernel/debug/lrng_testing/lrng_raw_hires
allows reading of the raw unconditioned noise data collected while
the read operation is in progress by providing the time stamps of the
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events collected by the LRNG that otherwise are injected into the
entropy pool. When booting the kernel with the kernel command line
option lrng_testing.boot_raw_hires_test=1, the time stamps of
the first 1,024 events recorded by the LRNG are stored. The first
read of the lrng_raw_hires file after boot provides this data in this
case.

– The interface /sys/kernel/debug/lrng_testing/lrng_raw_jiffies
allows reading of the raw unconditioned Jiffies collected while the
read operation is in progress by providing the Jiffies values collected
by the LRNG that otherwise are injected into the entropy pool (if
no high-resolution time stamp is detected). When booting the kernel
with the kernel command line option lrng_testing.boot_raw_jiffies_test=1,
the time stamps of the first 1,024 events recorded by the LRNG are
stored. The first read of the lrng_raw_jiffies file after boot pro-
vides this data in this case.

– The interface /sys/kernel/debug/lrng_testing/lrng_raw_irq al-
lows reading of the raw unconditioned interrupt numbers collected
while the read operation is in progress by providing the interrupt
number values collected by the LRNG that otherwise are injected into
the entropy pool (if no high-resolution time stamp is detected) or into
the random32 PRNG external to the LRNG. When booting the kernel
with the kernel command line option lrng_testing.boot_raw_irq_test=1,
the time stamps of the first 1,024 events recorded by the LRNG are
stored. The first read of the lrng_raw_irq file after boot provides
this data in this case.

– The interface /sys/kernel/debug/lrng_testing/lrng_raw_irqflags
allows reading of the raw unconditioned interrupt flags collected while
the read operation is in progress by providing the interrupt flag values
collected by the LRNG that otherwise are injected into the entropy
pool (if no high-resolution time stamp is detected) or into the ran-
dom32 PRNG external to the LRNG. When booting the kernel with
the kernel command line option lrng_testing.boot_raw_irqflag_test=1,
the time stamps of the first 1,024 events recorded by the LRNG are
stored. The first read of the lrng_raw_irqflags file after boot pro-
vides this data in this case.

– The interface /sys/kernel/debug/lrng_testing/lrng_raw_retip
allows reading of the raw unconditioned return instruction pointer
collected while the read operation is in progress by providing the
instruction pointer 32 LSB values collected by the LRNG that other-
wise are injected into the entropy pool (if no high-resolution time
stamp is detected) or into the random32 PRNG external to the
LRNG. When booting the kernel with the kernel command line op-
tion lrng_testing.boot_raw_retip_test=1, the time stamps of
the first 1,024 events recorded by the LRNG are stored. The first
read of the lrng_raw_retip file after boot provides this data in this
case.

– The interface /sys/kernel/debug/lrng_testing/lrng_raw_regs al-
lows reading of the raw unconditioned interrupt register state col-
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lected while the read operation is in progress by providing the se-
lected register 32 LSB values collected by the LRNG that otherwise
are injected into the entropy pool (if no high-resolution time stamp
is detected). When booting the kernel with the kernel command line
option lrng_testing.boot_raw_regs_test=1, the time stamps of
the first 1,024 events recorded by the LRNG are stored. The first
read of the lrng_raw_regs file after boot provides this data in this
case.

– The interface /sys/kernel/debug/lrng_testing/lrng_raw_array
allows reading of the raw noise data that has been stored in the per-
CPU collection pool collected while the read operation is in progress.
When booting the kernel with the kernel command line option lrng_testing.boot_raw_array=1,
the array content of the first 1,024 events recorded by the LRNG are
stored. The first read of the lrng_raw_array file after boot provides
this data in this case.

– The interface /sys/kernel/debug/lrng_testing/lrng_irq_perf al-
lows reading of the number of cycles used to process one interrupt
event. This allows measuring the performance impact of the LRNG
on the interrupt handler. When booting the kernel with the kernel
command line option lrng_testing.boot_irq_perf=1, the perfor-
mance data of the first 1,024 events recorded by the LRNG are stored.
The first read of the lrng_irq_perf file after boot provides this data
in this case.

• Scheduler Entropy Source:

– The interface /sys/kernel/debug/lrng_testing/lrng_raw_sched_hires
allows reading of the raw unconditioned noise data collected while
the read operation is in progress by providing the time stamps of the
events collected by the LRNG that otherwise are injected into the
entropy pool. When booting the kernel with the kernel command line
option lrng_testing.boot_raw_sched_hires_test=1, the time stamps
of the first 1,024 events recorded by the LRNG are stored. The first
read of the lrng_raw_sched_hires file after boot provides this data
in this case.

– The interface /sys/kernel/debug/lrng_testing/lrng_raw_sched_pid
allows reading of the PID value of the task that are about to be sched-
uled to collected while the read operation is in progress. The PID
values are extracted which are collected by the LRNG that otherwise
are injected into the entropy pool (if no high-resolution time stamp
is detected). When booting the kernel with the kernel command
line option lrng_testing.boot_raw_sched_pid_test=1, the time
stamps of the first 1,024 events recorded by the LRNG are stored.
The first read of the lrng_raw_sched_pid file after boot provides
this data in this case.

– The interface /sys/kernel/debug/lrng_testing/lrng_raw_starttime_pid
allows reading of the start time value of the task that are about to be
scheduled to collected while the read operation is in progress. The
start time values are extracted which are collected by the LRNG that

48



otherwise are injected into the entropy pool (if no high-resolution
time stamp is detected). When booting the kernel with the kernel
command line option lrng_testing.boot_raw_sched_starttime_test=1,
the time stamps of the first 1,024 events recorded by the LRNG are
stored. The first read of the lrng_raw_starttime_pid file after boot
provides this data in this case.

– The interface /sys/kernel/debug/lrng_testing/lrng_raw_nvcsw_pid
allows reading of the numbers of context switches of the task that
are about to be scheduled to collected while the read operation is in
progress. The context switch values are extracted which are collected
by the LRNG that otherwise are injected into the entropy pool (if
no high-resolution time stamp is detected). When booting the kernel
with the kernel command line option lrng_testing.boot_raw_sched_nvcsw_test=1,
the time stamps of the first 1,024 events recorded by the LRNG are
stored. The first read of the lrng_raw_nvcsw_pid file after boot
provides this data in this case.

– The interface /sys/kernel/debug/lrng_testing/lrng_sched_perf
allows reading of the number of cycles used to process one sched-
uler event. This allows measuring the performance impact of the
LRNG on the scheulder. When booting the kernel with the kernel
command line option lrng_testing.boot_sched_perf=1, the per-
formance data of the first 1,024 events recorded by the LRNG are
stored. The first read of the lrng_sched_perf file after boot provides
this data in this case.

• The interface /sys/kernel/debug/lrng_testing/lrng_acvt_hash allows
sending data to the used hash operation to calculate a message digest that
is returned to user space. With this interface ACVP testing can be im-
plemented showing compliance of the hash implementation with a NIST
reference implementation.

The helper tool getrawentropy.c is provided to read the files and format the data
for post-processing.

3 Interrupt Entropy Source Assessment
This section documents the entropy assessment and the compliance with various
standards of the interrupt entropy source. All other entropy sources are treated
as black boxes by the LRNG and must therefore deliver their own entropy
assessment.

The entropy sources of the auxiliary pool, the Jitter RNG and the CPU-
based entropy source are all not related to the interrupt entropy source. Thus,
the combination of all those entropy sources is subject to the SP800-90C assess-
ment provided in section 5.1

3.1 Noise Source Behavior
The noise source component of an entropy source contains the non-deterministic,
entropy-producing activity. For the IRQ entropy source this is the timing of the
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arrival of interrupts. The general behavior of the noise source can be character-
ized by analyzing the time stamps of the arrival time. Before performing this
analysis, a recap of the noise source is important:

• When an interrupt occurs, the LRNG obtains a high-resolution time stamp.
Technically it may be a cycle counter offered by the CPU that produces
the time stamp which is unrelated to time, but provides a fast-moving
counter.

• The time stamp is divided by the greatest common divisor (GCD) that is
calculated during boot time by using the first 100 time stamps.

• After the division with the GCD, the 8 least-significant bits of the time
stamp are used. The higher-order bits are discarded. These 8 bits are now
subject to post-processing via the collection pool, the entropy pool and
the DRNG.

Considering these static and never-changing steps, the noise source rests on
the gathering of the 8 bits from the last step. An analysis of the noise source
therefore focuses on these 8 bits. These 8 bits are subsequently referenced as
“raw noise source data”.

3.1.1 Distribution of Raw Data

If the noise source would operate perfectly, an equi-distribution of the raw noise
source data is to be expected. Various tests have been conducted on most major
CPUs as outlined in appendix C. Using the runtime data, a common pattern of
the raw noise source data emerges that can be seen with figure 3.1. This figure
uses the 1,000,000 traces of the raw noise source data from the IRQ entropy
source on the RISC-V, i.e. a system with less-then-average entropy rate.

Figure 3.1: RISC-V Raw Noise Source Data Distribution
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Figure 3.1 shows the following characteristics:

• A histogram of the number of time stamps received for each of the 256
possible time stamp values is depicted.

• The 25% and 75% quartiles of the distribution are marked with the two
green lines. They are at the time stamp value of 63 and 192, respectively

• The mean of the distribution is marked with the red line which is 127.45.

• The median of the distribution is marked with the blue line at 128.

• The black line marks the distribution of the time stamps.

• The standard derivation is not depicted, but it is at 73.89.

• The variation coefficient is not shown in the figure, but it is 0.579801.

The figure together with the mentioned statistical values clearly shows that it
is close to an equi-distribution. This means that the raw noise source data for
an entropy source instance on a less-than-ideal hardware still exhibit a distri-
bution that is close to the expected entropy source for a perfect operation. The
distributions of most tested systems are always close to an equi-distribution as
shown with the table below.

To verify that the distribution is an equi-distribution, a Chi-Squared Goodness-
of-Fit test is applied. For the mentioned RISC-V system, the following values
are observed:

• Asymptotic significance P: 0.2343

• Degrees of freedom: 255

The degrees of freedom shows that indeed all 256 possible timing values are
covered. Applying an alpha of 5%, the Chi-Squared test indicates that the
observed data set is an equi-distribution.

With the table below, the statistical properties for the different tested sys-
tems are listed.

Test System 25%
Quar-

tile

Median Mean 75%
Quar-

tile

Std.
Deriv.

Var.
Coeff.

χ2 P χ2 DF

AMD Ryzen
5950X - 64-bit

KVM
environment

64 128 127.6 192 73.88 0.58 0.0523 255

AMD EPYC
Milan 7713 2
sockets 128
cores 8-way

NUMA

63 127 127.48 192 73.91 0.58 0.4458 255

ARMv7 rev 5 68 128 121.05 191 72.95 0.60 0 255
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Test System 25%
Quar-

tile

Median Mean 75%
Quar-

tile

Std.
Deriv.

Var.
Coeff.

χ2 P χ2 DF

ARMv7 rev 5
(Freescale
i.MX53)9

63 128 127.52 192 74 0.58 0.4693 255

ARMv7 rev 5
(Freescale

i.MX6
Ultralite)10

63 127 127.15 191 73.96 0.58 0 255

ARM 64 bit
AppliedMicro

X-Gene
Mustang Board

63 128 127.54 192 73.94 0.58 0.7229 255

Intel Atom
Z530 – using

GUI

64 128 127.58 192 73.93 0.58 0.3181 255

Intel Sandy
Bridge Clang

Compile

62 125 125.86 187 73.24 0.58 0.9347 252

Intel i7 8565U
Whiskey Lake –

32-bit KVM
environment

64 128 127.53 192 73.91 0.58 0.2893 255

Intel i7 8565U
Whiskey Lake

63 127 127.37 191 73.86 0.58 0 255

Intel Xeon E7
4870 8 sockets

160 CPUs
8-way NUMA

64 127 127.44 191 73.89 0.58 0 255

Intel Xeon Gold
6234

64 126 126.75 190 73.88 0.58 0 12711

IBM POWER 8
LE 8286-42A

63 127 127.66 191 73.86 0.58 0 255

IBM POWER 7
BE 8202-E4C

64 128 130.07 192 73.96 0.57 0 255

IBM System Z
z13 (machine

2964)

56 120 118.27 184 73.58 0.62 0 235

IBM System Z
z15 (machine

8561)

58 122 124.3 192 73.54 0.59 0 239

MIPS Atheros
AR7241 rev 112

64 128 127.55 191 73.88 0.58 0.5646 255

9USBArmory MK I
10USBArmory MK II
11Tested without GCD.
12Ubiquiti Nanostation M5 (xm)
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Test System 25%
Quar-

tile

Median Mean 75%
Quar-

tile

Std.
Deriv.

Var.
Coeff.

χ2 P χ2 DF

MIPS Lantiq
34Kc V5.613

64 127 127.49 191 73.85 0.58 0 255

Qualcomm
IPQ4019
ARMv714

63 127 127.4 191 73.9 0.58 0 255

SiFive HiFive
Unmatched
RISC-V U74

63 127 127.45 192 73.89 0.58 0.2343 255

The Chi-Squared asymptotic significance shows for some systems that an
equi-distribution is not applicable, i.e. when the χ2 P value is less than 0.05.
Yet, when considering the other statistical values, the actual distribution is
neither skewed nor otherwise loop-sided. When looking at the distribution, it
becomes evident that some time stamps have a higher likelihood than others
which hint to special properties of the system. This observation applies to
all measurements which do not follow an equi-distribution based on the Chi-
Squared Goodness-of-Fit test. This allows the conclusion that the min-entropy
estimates given in appendix C can be considered to illustrate the real entropy
rate.

For example, the distribution for the USB Armory Mark II system shown
with figure 3.2 indicates that all time stamp values divisible by 8 are only chosen
two-thirds as often as the rest.

Figure 3.2: USB Armory Mark II: Raw Noise Source Data
13AVM Fritz Box 7490
14AVM Fritz Box 7520
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Another example is a specific ARMv7 system which contains a very periodic
timer interrupt. Figure 3.3 shows that the time stamp has a pattern but still ex-
hibits a distribution that does not contradict the expectation to deliver entropy
at the rate calculated in appendix C. In the worst case that the timer interrupt
only causes the raw noise source data which would exhibit a clear pattern, the
stuck health test would identify this pattern with the second discrete derivative
and disregards time stamp for entropy collection.

Figure 3.3: Periodic timer interrupt: Specific ARMv7 System Raw Noise Source
Data

A similar effect is visible on an IBM System Z z13 system shown with fig-
ure 3.4. Again, the shown pattern does not contradict the entropy rate calcu-
lated for this system in appendix C.
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Figure 3.4: IBM System Z Raw Noise Source Data

3.1.2 Greatest Common Divisor Assessment

The behavior of the GCD application can be clearly seen with the following
figures and numbers obtained for an Intel Atom Z530 system whose GCD is 4.

Without the application of the GCD, the distribution of the time stamp is
given with figure 3.5

Figure 3.5: Without GCD - Raw Noise Source Data Distribution

Figure 3.5 shows the following characteristics:
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• A histogram of the number of time stamps received for each of the 256
possible time stamp values is depicted.

• The 25% and 75% quartiles of the distribution are marked with the two
green lines. They are at the time stamp value of 63 and 188, respectively

• The mean of the distribution is marked with the red line which is 125.99.

• The median of the distribution is marked with the blue line at 128.

• The standard derivation is not depicted, but it is at 73.84.

• The variation coefficient is not shown in the figure, but it is 0.586089.

• χ2 P value for equi-distribution Goodness-of-Fit test: 0.4263

• χ2 degrees of freedom for equi-distribution Goodness-of-Fit test: 63

When applying the GCD, and obtaining a new measurement, the distribution
shown with figure 3.6 emerges:

Figure 3.6: With GCD - Raw Noise Source Data Distribution

Figure 3.6 shows the following characteristics:

• A histogram of the number of time stamps received for each of the 256
possible time stamp values is depicted.

• The 25% and 75% quartiles of the distribution are marked with the two
green lines. They are at the time stamp value of 64 and 192, respectively

• The mean of the distribution is marked with the red line which is 127.58.

• The median of the distribution is marked with the blue line at 124.
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• The standard derivation is not depicted, but it is at 73.93.

• The variation coefficient is not shown in the figure, but it is 0.579468.

• χ2 P value for equi-distribution Goodness-of-Fit test: 0.3181

• χ2 degrees of freedom for equi-distribution Goodness-of-Fit test: 255

This shows that the application of the GCD removes the “unused” time stamp
values without changing the overall distribution.

3.1.3 Worst and Regular Case Distribution

The measurements shown in appendix C commonly are obtained by applying a
worst-case which triggers as much interrupts as possible in the shortest amount
of time.

To compare the distributions of the time stamp between the worst case and
a regular case of normal system use, the USB Armory mark I system was tested
twice with the following result values:

• Worst case

– 25% quartile: 64
– Median: 128
– Mean: 127.6
– 75% quartile: 192
– Standard derivation: 73.91
– Variation coefficient: 0.579221
– χ2 P value for equi-distribution Goodness-of-Fit test: 0.9445
– χ2 degrees of freedom for equi-distribution Goodness-of-Fit test: 255

• Regular case

– 25% quartile: 63
– Median: 128
– Mean: 127.52
– 75% quartile: 192
– Standard derivation: 74
– Variation coefficient: 0.580276
– χ2 P value for equi-distribution Goodness-of-Fit test: 0.4693
– χ2 degrees of freedom for equi-distribution Goodness-of-Fit test: 255

The values indicate no statistical significant difference allowing the conclusion
that both distributions are very similar.

3.2 FIPS 140-3 Compliance
FIPS 140-3 specifies entropy source compliance in FIPS 140-3 IG D.K. This
section analyzes each requirement for compliance. The general requirement to
comply with SP800-90B [5] is analyzed in section 3.3.
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3.2.1 FIPS 140-3 IG D.K Requirement For Statistical Testing

The LRNG is provided with the following testing tools:

• Raw Entropy Tests: The tests obtain the raw unconditioned and unpro-
cessed noise information and records it for analysis with the SP800-90B
non-IID statistical test tool. The test tool includes the gathering of raw
entropy for one execution run as well as for the restart tests required in
SP800-90B section 3.1.4. The tool adjusts the data to be processed by
the SP800-90B statistical test tool. The test tool provides the SP800-90B
minimum entropy values.

In particular the first test covers the test requirement of FIPS 140-2 IG 7.18.

3.2.2 FIPS 140-3 IG D.K Heuristic Analysis

FIPS 140-2 IG 7.18 requires a heuristic analysis compliant to SP800-90B section
3.2.2. The discussion of this SP800-90B requirement list is given in section 3.3.

3.2.3 FIPS 140-3 IG D.K Additional Comment 1

The first test referenced in section 3.2.1 covers this requirement.
The test collects the time stamps of interrupts as they are received by the

LRNG. Instead of having these interrupts processed by the LRNG to add them
to the entropy pool, they are sent to a user space application for storing them
to disk.

The collection of the interrupt data for the raw entropy testing is invoked
from the same code path that would otherwise add it to the LRNG entropy
pool. Thus, the test collects the exact same data that would otherwise have
been used by the LRNG as noise data. Thus, the testing does not alter the
LRNG processing.

However, the tester performing the test should observe the following caveat:
the raw entropy data obtained with the user space tool should be stored on
“disk space” that will not generate interrupts as otherwise the testing would
itself generate new interrupts and thus alter the measurement. For example, a
ramdisk can be used to store the raw entropy data while the test is ongoing. On
common Linux environments, the path /dev/shm is usually a ramdisk that can
readily be used as a target for storing the raw entropy data. If that partition is
non-existent, the tester should mount a ramdisk or use different backing store
that is guaranteed to not generate any interrupts when writing data to it.

3.2.4 FIPS 140-3 IG D.K Additional Comment 2

The lowest entropy yield is analyzed by gathering raw entropy data received
from interrupts that come in high frequency. In this case, the time stamps
would be close together where the variations and thus the entropy provided
with these time stamps would be limited.

The extreme case would be to send a flood of ICMP echo request messages
with a size of only one byte to the system under test from a neighboring system
that has a close proximity with very little network latency. Each ICMP request
would trigger an interrupt as it is processed by the network card. The most
extreme case can be achieved when executing the LRNG in a virtual machine
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where the VMM host sends a ping flood to the virtual machine. In this case,
network latency would be reduced to a minimum. In the subsequent sections,
test results are shown which are generated with an LRNG executing in a virtual
machine where the host sends a flood of ICMP echo request messages to trigger
a worst case measurement.

The entropy is not considered to degrade when using the hardware within
the environmental constraints documented for the used CPU. The online health
tests are intended to detect entropy source degradation. In case of online health
test failures, section 2.5.2 explains the applied actions.

3.2.5 FIPS 140-3 IG D.K Additional Comment 3

The LRNG uses the following conditioning components:

• For collecting of entropy data from the entropy source, an approved mes-
sage digest operation is used.

• For reading the entropy pool and compressing the entropy data, the hash
operation is used. The security strength of the LRNG is the minimum of
the DRBG security strength and the security strength of the hash following
[5] section 3.1.5.1.1 table 1. All ciphers can be tested via ACVT, including
the LRNG-builtin SHA-1 or SHA-256 hash implementation.

3.2.6 FIPS 140-3 IG D.K Additional Comment 4

The restart test is covered by the first test documented in section 3.2.1.

3.2.7 FIPS 140-3 IG D.K Additional Comment 6

The entropy assessment usually shows this conclusion – tests performed on Intel
x86-based systems show the following conclusions:

The entropy rate for all devices validated with the raw entropy tests outlined
in section 3.2.1 show that the minimum entropy values are always above one
bit of entropy per four data bits. The data bits are the least significant bits of
the time stamp generated by the raw noise.

Assuming the worst case that all other bits in the time delta have no entropy,
that entropy value above one bit of entropy applies to one time stamp.

The LRNG continuously gathers time stamps to be combined with a hash
which is entropy preserving. The hash operation function providing data to the
DRNG gathers only as much bits as time stamps were received. For example,
if the LRNG only received 16 time stamps, the LRNG will only deliver 2 bytes
of data to the DRNG. This effectively implies that the LRNG assumes that one
bit of entropy is received per time stamp.

As the LRNG maintains an entropy pool, its entropy content cannot be larger
than the pool itself. Thus, the entropy content in the pool after collecting as
many time stamps as the entropy pool’s size in bits is the maximum amount
of entropy that can be held. Yet, as new time stamps are received, they are
mixed into the entropy pool. In case the entropy pool is considered to have fully
entropy, existing entropy is overwritten with new entropy.

This implies that the LRNG data generated from the entropy pool has (close
to) 1 bit of entropy per data bit.
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3.2.8 FIPS 140-3 IG D.K Additional Comment 9

N/A as the raw entropy is a non-IID source and processed with the non-IID
SP800-90B statistical tests as documented in section 3.2.1.

3.3 SP800-90B Compliance
This chapter analyzes the compliance of the LRNG to the SP800-90B [5] stan-
dard considering the FIPS 140-2 implementation guidance 7.18 which alters
some of the requirements mandated by SP800-90B.

3.3.1 SP800-90B Section 3.1.1

The collection of raw data for the SP800-90B entropy testing documented in
section 3.2.1 uses 1,000,000 consecutive time stamps obtained in one execution
round.

The restart tests documented in section 3.2.1 perform 1,000 restarts collect-
ing 1,000 consecutive time stamps.

3.3.2 SP800-90B Section 3.1.2

The entropy assessment of the raw entropy data including the restart tests
follows the non-IID track.

3.3.3 SP800-90B Section 3.1.3

Please see section 3.2.7: The entropy of the raw noise source data is believed to
have more than one bit of entropy per time stamp to allow to conclude that one
output block of the LRNG has (close to) one bit of entropy per data bit. Yet,
this rate can be configured at compile time to be lower than one bit of entropy
per interrupt event.

The first test referenced in section 3.2.1 performs the following operations
to provide the SP800-90B minimum entropy estimate:

1. Gathering of the raw entropy data of the time stamps.

2. Obtaining the four least significant bits of each time stamp and concate-
nate them to form a bit stream.

3. The bit stream is processed with the SP800-90B entropy testing tool to
gather the minimum entropy.

For example, on an Intel Core i7 Skylake system executing the LRNG in a KVM
guest, the SP800-90B tool shows the following minimum entropy values when
multiplying the SP800-90B tool bit-wise minimum entropy by four since four
bits are processed: 3.452064.

3.3.4 SP800-90B Section 3.1.4

For the restart tests, the raw entropy data is collected for the first 1,000 interrupt
events received by the LRNG after a reboot of the operating system. That
means, for one collection of raw entropy the test system is rebooted. This
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implies that for gathering the 1,000 restart samples, the test system is rebooted
1,000 times.

Each restart test round stores its time stamps in an individual file.
After all raw entropy data is gathered, a matrix is generated where each line

in the matrix lists the time stamp of one restart test round. The first column of
the matrix, for example, therefore contains the first time stamp for each boot
cycle of the Linux kernel with the LRNG.

The SP800-90B minimum entropy values column and row-wise is calculated
the same way as outlined above:

1. Gathering of the raw restart entropy data of the time stamps.

2. Obtaining the four least significant bits of each time stamp either row-wise
or column-wise and concatenate them to form a bit stream. There are
1,000 bit streams row-wise, and 1,000 bit streams column-wise boundary
generated.

3. The bit streams are processed with the SP800-90B entropy testing tool to
gather the minimum entropy.

In a following step, the sanity check outlined in SP800-90B section 3.1.4.3 is
applied to the restart test results. The steps given in 3.1.4.3 are applied.

For example, on an Intel Core i7 Skylake system executing the LRNG in a
KVM guest, the SP800-90B tool shows the following minimum entropy values
when multiplying the SP800-90B tool bit-wise minimum entropy by four since
eight bits are processed:

• Using the 8 least significant bits of the time stamps in column-wise assess-
ment – lowest entropy value of all 1,000 column entries: 3.455504

• Using the 8 least significant bits of the time stamps in row-wise assessment
– lowest entropy value of all 1,000 column entries: 3.393808

• Sanity check of the 1,000 x 1,000 matrix passes with value of one

With the shown values, the restart test validation passes according to SP800-
90B section 3.1.4.

3.3.5 SP800-90B Section 3.1.5

The conditioning component applied to the interrupt entropy source are per-
formed at different stages as outlined in section 2.1. Although the hashing
operation is used for different stages, the following discussion is applicable to
all use cases.

Truncation The truncation operation ensures that the entropy in that data
is at maximum the truncated hash.

The truncation of operation (1) listed in section 2.2 is not affected by the
capping of the entropy, because the quantitative measurement of the existing
entropy using the SP800-90B tool set is performed using that truncated input
data. The LRNG implies an entropy of 1 bit per truncated time stamp and zero
bits of entropy per arbitrary 32-bit word size which means that the entropy
present in the data is always smaller as the data size.
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The truncation operation of step (6) listed in section 2.2 verifies that the
truncated data contains at most the amount of entropy as the generated data
size. The remaining part of the truncated data is not exported to any external
entity but remains in the per-CPU entropy pools - when new random data is
generated involving the entropy pools, the current entropy pool states are always
hashed. This is a deviation from SP800-90B section 3.1.5.1.2 which requires a
relative reduction of entropy. This statement is considered inconsistent with the
statement implied in table 1 [5] and therefore wrong depicted with the following
analogy: Assume to have a buffer of 512 bits of data having 256 bits of entropy.
When hashing it with SHA-512, the resulting message digest of 512 bits has 256
bits of entropy. When truncating the digest to 256 bits, SP800-90B states the
entropy is 128 bits. However, SP800-90B section 3.1.5.1.1 table 1 states that
full entropy is given to approved hash functions. Assume to use a SHA-512/256
which has a digest size of 256 bits and thus could transport 256 bits of entropy
following table 1. This SHA-512/256 hash operation calculates a SHA-512 hash
truncated to 256 bits. Albeit the cryptographic operation of SHA-512/256 is
identical to the LRNG-applied truncation15, SP800-90B table 1 awards 256 bits
of entropy to SHA-512/256 but at the same time SP800-90B would apply only
128 bits to the LRNG-applied truncation. Due to this inconsistency, the LRNG
applies the entropy behavior implicitly specified in table 1, i.e. the entropy is
the minimum of the available entropy and the message digest size. Furthermore,
applying the Output_Entropy formula for a vetted conditioning component of
a truncated hash, the following calculation applies. This calculation shows the
entropy rate of a SHA-512 hash processing a buffer with 1024 bits that contains,
say, 384 bits of entropy and truncating it to 256 bits. This means, the formula
for houtSHA−512 trunc

= Output_EntropySHA−512 trunc(1024, 256, 512, 384) fol-
lowing [5] section 3.1.5.1.2 is calculated:

Phigh = 2−384

Plow = (1 − 2−384)
21024 − 1 ≈ 2−1024

n = min(256, 512) = 256

ψ = 21024−256 · 2−1024 + 2−384 = 2−256 + 2−384 ≈ 2−256

U = 21024−256 +
√

2 · 256 · (21024−256) · ln(2) = 2768 +
√

2777 · ln(2) ≈ 2768

ω = 2768 × 2−1024 = 2−256

Output_EntropySHA−512 trunc(1024, 256, 512, 384) = −log2(max(2−256, 2−256)) = 256

Even after calculating other entropy rates using the same formula, the fol-
lowing conclusion for the truncation can be applied:

Output_Entropytrunc(nin, nout, nw, hin) = min(nin, nout, nw, hin)

This function is applied by the LRNG for hash truncation.
15Depending on the runtime configuration the LRNG uses a hash of SHA-512 and fills a

buffer of the DRNG security strength size, i.e. 256 bits.
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Concatenation When applying a concatenation operation, the LRNG simply
adds the entropy delivered with each data entry part.

Hash The input of the hash nin is fixed as it processes the existing per-CPU
entropy pool(s), auxiliary pool and the per-CPU collection pools.

The output of the hash nout is usually fixed to the message digest size. The
on exception is the output of the hash nout to provide the seed to the DRNG: it is
the minimum of either the digest size of the used hash or the amount of entropy
available in the processed entropy pools based on the number of “unprocessed”
time stamps held in the per-CPU entropy pools.

The following hashes are used for the hash function depending on the loaded
DRNG:

• ChaCha20: SHA-256 in normal case, SHA-1 if kernel is not compiled with
CONFIG_CRYPTO

• SP800-90A Hash DRBG: SHA-512

• SP800-90A HMAC DRBG: SHA-512

• SP800-90A CTR DRBG: SHA-512

In the following, the different hash operations specified in section 2.2 are applied
as follows:

• Compression of entropy delivered from the interrupt entropy source when
adding the entropy into the per-CPU entropy pools.

• Compression of entropy delivered from one or more LRNG-external en-
tropy sources when adding the entropy into the auxiliary pool.

• Compression of entropy delivered by the different per-CPU entropy pools
when “reading” the entropy pools.

The requirement of [5] section 3.1.6 states that when combining two or more
noise sources using a vetted conditioning component, only one noise source is
to be credited with entropy. This requirement is met as follows: according to
[5] section 2.2 a noise source is the phenomenon delivering entropy. The noise
source data is post-processed with conditioning components and health tests to
form an entropy source. Based on this statement, the collection of the per-CPU
entropy pools together form one entropy source that is compliant to SP800-90B.

Note, the reason for hashing the per-CPU entropy pools together with the
auxiliary pool is to ensure backward secrecy when calculating the next round of
random numbers used to fill the seed buffer used to seed the DRBG from the
entropy sources sources.

Approach for Calculating Entropy Although the aforementioned sections
explain that the input and output sizes may not be fixed, in regular operation
they are quasi-fixed. In order to reseed a DRNG, 256 bits of entropy are to
be generated from the noise source. Although the per-CPU collection pools
receive interrupt time stamps continuously, only the entropy from 256 time
stamps are required as illustrated below. Only when all per-CPU entropy pools
have received too little interrupt time stamps to satisfy the 256 bit entropy
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request, less output data is generated. This commonly happens during boot or
at runtime when too much entropy is requested. Though, during boot time,
the DRNG will receive a (re)seed with 256 bits of entropy before the LRNG
is considered fully operational. Therefore, the prior boot-time (re)seed events
with less entropy may even be disregarded for the entropy assessment.

With the given combination of the hash as outlined above, the following
approach for the entropy calculation is taken for each of the data processing
steps outlined in section 2.2:

• Function 2.2:

– ninper−CP U pool
equals to 8,192 bits as the per-CPU entropy pool ob-

tains its input data from the collection pool that has a size of 8,192
bits (1,024 * 8 bits)16 .

– noutper−CP U pool
is the message digest size in bits.

– nwper−CP U pool is the message digest size in bits.

• Function 2.8:

– ninaux pool
equals to 512 bits as the auxiliary pool pool size is 512 bits

in size plus the provided input data.
– noutaux pool

is the message digest size in bits.
– nwaux pool is the message digest size in bits.

• Function 2.3:

– ninhash pools
equals to

∑max CP U
a=0 noutper−CP U poola

+ nouthash aux

– nouthash pools
is the message digest size in bits.

– nwhash pools is the message digest size in bits.

3.3.6 SP800-90B Section 3.1.5.1

The hash operation is either SHA-512, SHA-256, or SHA-1 as outlined above
is considered to be a vetted conditioning component. Thus the entropy rate of
the hash output is calculated as follows using the aforementioned variables for
the hash function. In addition, the following consideration applies:

• The entropy content of the input hinper−CP U pool
: The input entropy of the

hash used to process the per-CPU entropy pool is equal to the entropy
provided by the per-CPU collection pool and the entropy already present
in the per-CPU entropy pool considering that both data components are
hashed at the same time to form a new per-CPU entropy pool state. Of
course, the entropy held in the per-CPU entropy pool will never be larger
than the digest size of the used hash which is compliant to [5] section
3.1.5.1.1 table 1.

16Section 6.2 outlines that the LRNG collection size can be modified at compile time where
the default is 1,024. When a different collection size is chosen, the value needs to be adjusted
accordingly. Yet, such modified value has no impact to the entropy analysis.
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• The entropy content of the input hinaux pool
: The input entropy of the

hash used to process the auxiliary pool is equal to the entropy provided
by the noise source and the already collected entropy in the auxiliary
pool considering that both data components are hashed at the same time
to form a new auxiliary pool state. Of course, the entropy held in the
auxiliary pool will never be larger than the digest size of the used hash
which is compliant to [5] section 3.1.5.1.1 table 1.

• The entropy content of the input hinhash pools
: The input entropy of the

hash used to process the entire entropy pool is equal to the entropy found
in all per-CPU entropy pools managed by the hash operation and the
auxiliary pool. Again, the entropy generated by the hash will never be
larger than the digest size of the used hash which is compliant to [5] section
3.1.5.1.1 table 1.

Function 2.2 Output_Entropy To perform a calculation of the Output_Entropy
of a conditioning component, the input entropy must be considered. The heuris-
tic input entropy awarded for one time stamp processed by the LRNG is given
in equation 3.2. Due to the concatenation operation of time stamps, the entropy
of multiple time stamps can be added.

For the function 2.2, the entropy when 1,024 time stamps are received is
houtSHA−512 = Output_EntropySHA−512(8192, 512, 512, 1024) following [5] sec-
tion 3.1.5.1.2. Therefore, the following calculation is applicable:

Phigh = 2−1024

Plow = (1 − 2−1024)
28192 − 1 ≈ 2−8192

n = min(512, 512) = 512

ψ = 28192−512 · 2−8192 + 2−1024 = 2−512 + 2−1024 ≈ 2−512

U = 28192−512 +
√

2 · 512 · (28192−512) · ln(2) = 27680 +
√

27690 · ln(2) ≈ 27680

ω = 27680 × 2−8192 = 2−512

Output_EntropySHA−512(8192, 512, 512, 1024) = −log2(max(2−512, 2−512)) = 512

As a complement, the same calculation is provided when only one time stamp
is received for the formula houtSHA−512 = Output_EntropySHA−512(8, 512, 512, 1)

Phigh = 2−1

Plow = (1 − 2−1)
28 − 1 ≈ 2−9

n = min(512, 512) = 512

ψ = 28−512 · 2−9 + 2−1 = 2−513 + 2−1 ≈ 2−1
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U = 28−512+
√

2 · 512 · (28−512) · ln(2) = 2−504+
√

2−494 · ln(2) ≈ 2−247·
√
ln(2) ≈ 2−248

ω = 2−248 × 2−9 = 2−257

Output_EntropySHA−512(8, 512, 512, 1) = −log2(max(2−257, 2−1)) = 1
The calculation can be generalized with the following formula:

houtSHA−512 = Output_EntropySHA−512 = min(hin, noutSHA−512)

When using SHA-256, the same type of calculation can be provided. The
first set of formulas show the case when 1,024 time stamps are received and thus
for houtSHA−256 = Output_EntropySHA−256(8192, 256, 256, 1024):

Phigh = 2−1024

Plow = (1 − 2−1024)
28192 − 1 ≈ 2−8192

n = min(256, 256) = 256

ψ = 28192−256 · 2−8192 + 2−1024 = 2−256 + 2−1024 ≈ 2−256

U = 28192−256 +
√

2 · 256 · (28192−256) · ln(2) = 27936 +
√

27945 · ln(2) ≈ 27936

ω = 27936 × 2−8192 = 2−256

Output_EntropySHA−256(8192, 256, 256, 1024) = −log2(max(2−256, 2−256)) = 256
As a complement, the same calculation is provided when only one time stamp

is received for the formula houtSHA−512 = Output_EntropySHA−256(8, 256, 256, 1)

Phigh = 2−1

Plow = (1 − 2−1)
28 − 1 ≈ 2−9

n = min(256, 256) = 256

ψ = 28−256 · 2−9 + 2−1 = 2−257 + 2−1 ≈ 2−1

U = 28−256+
√

2 · 256 · (28−256) · ln(2) = 2−248+
√

2−239 · ln(2) ≈ 2−120·
√
ln(2) ≈ 2−121

ω = 2−121 × 2−9 = 2−130

Output_EntropySHA−256(8, 256, 256, 1) = −log2(max(2−130, 2−1)) = 1
Again, the calculation can be generalized with the following formula:

houtSHA−256 = Output_EntropySHA−256 = min(hin, noutSHA−256)

Comparing the conclusions for SHA-512 and SHA-256, both allow to draw
the general conclusion that underlies the entire entropy assessment and therefore
data entropy management applied by the LRNG for all vetted conditioning
operations:

houtvetted
= Output_Entropyvetted = min(hin, noutvetted

) (3.1)
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Function 2.8 The function 2.8 uses the same hash operation as the discussed
in the preceding section. Thus, the conclusion drawn with equation 3.1 applies
here as well.

Function 2.3 The function 2.3 uses the same hash operation as the discussed
in the preceding section. Thus, the conclusion drawn with equation 3.1 applies
here as well.

Conclusions for Output_Entropy As stated in [5] section 3.1.5.1.2, vet-
ted conditioning components are allowed to claim full entropy. In case of full
entropy, the following is applied which matches exactly analysis and conclusion
of equation 3.1:

• houtSHA−512 = min(hin, noutSHA−512),

• houtSHA−256 = min(hin, noutSHA−256), or

• houtSHA−1 = min(hin, noutSHA−160).

Based on that conclusion, the entropy rate for each processing step given in
section 2.2 can be illustrated in the following. This entropy assessment uses
nout which depends on the chosen hash operation with the respective value
listed above for the chosen hash.

Heuristic Entropy Assessment The heuristic entropy value for the indi-
vidual time stamps is defined with the following equation applicable when a
high-resolution timer is present – the absence of a high-resolution timer auto-
matically implies the LRNG is treated as non-compliant to SP800-90B:

ht8 = ht32 = 1 (3.2)

Note, in order to assess whether the LRNG heuristic entropy value is ap-
propriate, it must be compared with the entropy analysis result received from
practical measurements such as outlined in sections 3.3.3 and 3.3.4. This com-
parison must show that the heuristic entropy value is always lower and thus
more conservative than what the measurements show on target devices.

The entropy present in the arbitrary 32 bit word that may be added to the
per-CPU collection pool is defined with:

ha32 = 0 (3.3)

The entropy in the concatenated time stamps found in the interrupt as
well as scheduler per-CPU collection pool is calculated as the sum of all time
stamps (truncated or not) present in the interrupt as well as scheduler per-
CPU collection pool of 1,024 bytes per default – if a different collection pool
size is used, the right-hand value of the following equation must be adjusted
accordingly:

hper−CP U CP = min(
number time stamps∑

n=0
(ht{8,32})n, 1024) (3.4)
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For the maintenance of the interrupt per-CPU entropy pool as specified by
equation 2.2, the following entropy rate applies when continuous compression
support is enabled. This formula implies that each output of the interrupt
per-CPU entropy pool holds the sum of the entropy of the received per-CPU
collection pool since last generation of the per-CPU output data and the entropy
remained in the per-CPU entropy pool capped by the message digest size. This
operation implies that the used hash compresses of the entropy available in the
different input data.

hper−CP U pooln = min(
m=n−1∑

m=0
hper−CP U CPm + hper−CP U pooln−1 , nout) (3.5)

When continuous compression support is disabled as well as for the scheduler-
based entropy source, the per-CPU entropy pool maintenance specified by equa-
tion 2.2 shows the following entropy rate. The formula implies that the max-
imum amount of entropy that can be held depends on the size of the collec-
tion pool depicted with equation 2.1 since additional entropy received by the
collection pool overwrites old entropy data. The collection pool can hold the
maximum amount of entropy event data as defined with its size. After convert-
ing the number of received entropy event data into an entropy statement using
equation 3.2, the maximum amount of entropy held in the collection pool is
available.

hper−CP U pooln = min(hper−CP U CP n + hper−CP U pooln−1 , nout) (3.6)

Similarly, the following equation applies to the entropy of the auxiliary pool
maintenance as specified by equation 2.8. Note, although this entropy source
is not considered to be modeled in this chapter, the formula is still provided
illustrating the use of a vetted conditioning component. This formula implies
that auxiliary pool holds the sum of the entropy of the received data capped
by the message digest size. Again, this operation implies that the used hash
compresses the entropy available in the different input data.

haux pool = min(hinaux pool
+ haux pool, nout) (3.7)

The following equation applies when calculating the interrupt and scheduler-
based entropy source output buffer before its truncation as specified by equa-
tion 2.3. The formula implies that the interrupt entropy source buffer before
truncation holds the sum of the entropy of all per-CPU entropy pools plus the
auxiliary pool capped by the message digest size. Again, this operation implies
that the used hash compresses the entropy available in the different input data.

hhash pools = min(
max CP U∑

c=0
hper−CP U poolc

, nout) (3.8)

The entropy present in the truncated interrupt entropy source buffer is the
minimum of the entropy found in the pools and the requested amount of bits
which is equal to the security strength of the DRBG:

requested sizes = security strength = 256 (3.9)
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hs = min(hhash pools, requested sizes) (3.10)

The entropy of the temporary seed buffer following equation 3.1 is simply
an addition of the entropy values credited for each of the entropy source with
hA denominating the auxiliary entropy entropy rate, hE references the IRQ ES
entropy rate, , hS references the scheduler ES entropy rate, , hJ covers the
Jitter RNG ES entropy rate, hC references the CPU ES entropy rate, and hK

references the kernel ES entropy rate::

hT = hA + hE + hS + hJ + hC (3.11)

The result of the formulas show that the entropy is simply a sum of the
entropy of all input events capped to the message digest size of the used hash
operation.

When generating the random numbers filling the interrupt entropy source
buffer, the entropy is debited in the following steps. First the entropy estimator
of the auxiliary pool is reduced as much as possible: either by hs or at most
to zero. If not all entropy of hs could have been debited from the auxiliary
pool entropy estimator, then the yet not debited part of hs is debited from the
per-CPU entropy pool entropy estimators.

For example, assume that after the generation of random numbers and filling
the slow noise source buffer its entropy is hs = 256. Assume further, the per-
CPU entropy pools of the assumed 2 CPUs contain hper−CP U poolCP U0 = 185
and hper−CP U poolCP U1 = 123. The debit operation performs:

1. hper−CP U poolCP U0 = 185 − 185 = 0 leaving hsnot debited
= 256 − 185 = 71

2. hper−CP U poolCP U1 = 123 − 71 = 52

3.3.7 SP800-90B Section 3.1.6

The LRNG uses the following noise sources for the interrupt entropy source:

• The noise source of the timing of the occurrence of interrupts. The entire
SP800-90B analysis covers this one noise source. Thus, the requirements
in this section for the interrupt noise source are trivially met.

• Auxiliary data delivered as part of interrupts: HID event data. This data
is concatenated with the interrupt time stamps into the collection pool.
Yet it is always credited with zero bits of entropy.

All data is processed by the vetted conditioning component of the hash before
it is injected as seed data into the DRNG. Thus, this operation complies with
the last paragraph of section 3.1.6.

3.3.8 SP800-90B Section 3.2.1 Requirement 1

This entire document is intended to provide the required analysis.

3.3.9 SP800-90B Section 3.2.1 Requirement 2

This entire document in general and chapter 3 in particular is intended to pro-
vide the required analysis.
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3.3.10 SP800-90B Section 3.2.1 Requirement 3

There is no specific operating condition other than what is needed for the op-
erating system to run since the noise source is a complete software-based noise
source.

The only dependency the noise source has is a high-resolution timer which
does not change depending on the environmental conditions.

3.3.11 SP800-90B Section 3.2.1 Requirement 4

This document explains the architectural security boundary.
The boundary of the implementation is the source code files provided as part

of the software delivery. This source code contains API calls which are to be
used by entities using the LRNG.

3.3.12 SP800-90B Section 3.2.1 Requirement 5

The per-CPU entropy pools as processed by the hash is the output of the inter-
rupt noise source. I.e. the entropy pools maintained by the hashing operation
holds the data that is given to the DRNG when requesting seeding.

The noise source output without the hashing operation is accessed with
specific tools which add interfaces that are not present and thus not usable when
employing the LRNG in production mode. These additional interfaces are used
for gathering the data used for the analysis documented in section 3.3.3. These
interfaces perform the following operation:

1. Switch the LRNG into raw entropy generation mode. This implies that
each raw entropy event is fed to the raw entropy collection interface and
not processed by the per-CPU collection pool or otherwise used.

2. When an interrupt event is received, forward the time stamp holding the
entropy to a ring buffer. This operation is performed repeatedly until the
ring buffer is full or the user space application read that ring buffer.

3. When an application requests the reading of the ring buffer, the data is
extracted from the kernel and the ring buffer is cleared.

With this approach, the actual interrupt events which would be processed by
the LRNG are obtained.

The kernel interface is only present if the kernel is compiled with the option
CONFIG_LRNG_RAW_HIRES_ENTROPY. This option should not be set in production
kernels.

3.3.13 SP800-90B Section 3.2.1 Requirement 6

Please see section 3.2.3 for details how and why the raw entropy extraction does
not substantially alter the noise source behavior.

3.3.14 SP800-90B Section 3.2.1 Requirement 7

See section 3.3.4 for a description of the restart test.
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3.3.15 SP800-90B Section 3.2.2 Requirement 1

This entire document provides the complete discussion of the noise source.

3.3.16 SP800-90B Section 3.2.2 Requirement 2

The noise source is based on the receipt of interrupts. The receipt of interrupts
follows the usage of the system. The more I/O is performed with the system, the
more interrupts are received by the LRNG. The entropy rate only is a function
of the received I/O events and the timer and does not depend on any other
system property such as physical characteristics (e.g. temperature variations
or voltage/current variations). This finding is consistent with the fact that the
noise source is a pure software-based noise source which relies on the presence of
a high-resolution timer. Note, the used timer is a cycle counter that increments
with a given rate.

3.3.17 SP800-90B Section 3.2.2 Requirement 3

See sections 3.3.6 for a discussion of the entropy provided by the interrupt noise
source.

A stochastic model is not provided.

3.3.18 SP800-90B Section 3.2.2 Requirement 4

The noise source is expected to execute in the kernel address space. This implies
that the operating system process isolation and memory separation guarantees
that adversaries cannot gain knowledge about the LRNG operation.

3.3.19 SP800-90B Section 3.2.2 Requirement 5

The output of the noise source is non-IID as it rests on the execution time of a
fixed set of CPU operations and instructions.

3.3.20 SP800-90B Section 3.2.2 Requirement 6

The noise source generates the data via the hash generation function as outlined
in section 3.3.5.

Although the hash commonly generates a fixed-length string, this string
length may be reduced by the amount of available entropy as outlined in sec-
tion 3.3.6.

3.3.21 SP800-90B Section 3.2.2 Requirement 7

N/A as no additional noise source is implemented with the interrupt entropy
source.

Though, the LRNG employs complete self-contained other entropy sources
which may be compliant to SP800-90B by itself. To seed the DRNG maintained
by the LRNG, the output of all entropy sources are concatenated compliant to
SP800-90C as outlined in section 5.1.
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3.3.22 SP800-90B Section 3.2.3 Requirement 1

The conditioning component is the hash operation. See section 3.3.5 for a
discussion of the input and output sizes.

3.3.23 SP800-90B Section 3.2.3 Requirement 2

The used hash implementations for the conditioning components functions are
all ACVP-testable. The LRNG offers an ACVP interface to ensure also the
built-in SHA-256 and SHA-1 implementations are testable.

3.3.24 SP800-90B Section 3.2.3 Requirement 3

For the defined hashes, no key is required.

3.3.25 SP800-90B Section 3.2.3 Requirement 4

For the defined hashes, no key is required.

3.3.26 SP800-90B Section 3.2.3 Requirement 5

The conditioning component is the hash operation. See section 3.3.6 for a
discussion of the narrowest internal width and the output block size.

3.3.27 SP800-90B Section 3.2.4 Requirement 1

Test tools for measuring raw entropy are provided at the LRNG web page.
These tools can be used by everybody without further knowledge of the LRNG.

3.3.28 SP800-90B Section 3.2.4 Requirement 2

The operation of the test tools for gathering raw data are discussed in sec-
tion 3.3.3. This explanation shows that the raw unconditioned data is obtained.

3.3.29 SP800-90B Section 3.2.4 Requirement 3

The provided tools for gathering raw entropy contains exact steps how to per-
form the tests. These steps do not require any knowledge of the noise source.

3.3.30 SP800-90B Section 3.2.4 Requirement 4

The raw entropy tools can be executed on the same environment that hosts the
LRNG. Thus, the data is generated under normal operating conditions.

3.3.31 SP800-90B Section 3.2.4 Requirement 5

The raw entropy tools can be executed on the same environment that hosts the
LRNG. Thus, the data is generated on the same hardware and operating system
that executes the LRNG.
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3.3.32 SP800-90B Section 3.2.4 Requirement 6

The test tools are publicly available at LRNG web page allowing the replication
of any raw entropy measurements.

3.3.33 SP800-90B Section 3.2.4 Requirement 7

Please see section 3.2.3 for details how and why the raw entropy extraction does
not substantially alter the noise source behavior.

3.3.34 SP800-90B Section 4.3 Requirement 1

The implemented health tests comply with SP800-90B sections 4.4 as described
in section 3.3.44.

3.3.35 SP800-90B Section 4.3 Requirement 2

When either health test fails, the kernel:

• Emits a failure log,

• Resets the noise source, and

• Restarts the SP800-90B startup health tests.

This implies that no data is produced by the LRNG (including its DRNG) when
using the SP800-90B compliant external interfaces.

Both health test failures are considered permanent failures and thus trigger
a full reset.

3.3.36 SP800-90B Section 4.3 Requirement 3

The following false positive probability rates are applied:

• RCT: The false positive rate is α = 2−30 and therefore complies with the
recommended false positive probability.

• APT: The cut-off value is set to 325 compliant to SP800-90B section 4.4.2
for non-binary data at a significance level of α = 2−30 with time stamp is
assumed to at least provide one bit of entropy, i.e. H = 117.

3.3.37 SP800-90B Section 4.3 Intermittent vs. Permanent Failures

To comply with the requirement of FIPS 140-3 that a health failure is treated as
a FIPS module error18 in case the LRNG is considered part of a FIPS module,
the following approach is taken:

17Note, the referenced Excel function seems to be imprecise when calculating the value. The
data has been obtained using R-Project with the formula of 1 + qbinom(1 − 2−30, 512, 2−1).

18A module error implies that all services of the FIPS module must cease to operate. For
the kernel crypto API that is achieved by stopping the kernel, a situation that should be
avoided unless a catastrophic event happened.
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1. The APT/RCT alpha values that are specific to the entropy source are
considered intermittent errors as defined by [5] section 4.3 bullet 2. This
means that in case a health test error is identified for the entropy source, a
reset of the entropy source is performed. This implies that all potentially
collected entropy is considered to be removed, the health test is reset and
a complete new power-on health test is performed. The entropy source
does not produce data in this case and reports zero entropy to the LRNG.
Yet, after a successful power-on health test, the entropy source becomes
available again to serve entropy to the LRNG.

2. The LRNG implements a permanent APT/RCT failure with an alpha
rate of α = 2−60 that causes the kernel to stop. This permanent failure is
implemented by identifying two back-to-back intermittent health failures.
The chosen alpha value is considered appropriate considering it is to be
interpreted as a false-positive rate according to [5] section 4.2. Assum-
ing the LRNG is used in larger numbers of Linux kernels which run all
concurrently, the false-positive rate must be applied to all those systems
running concurrently which implies that the likelihood of a false-positive
to occur is much higher. For example, if 220 Linux kernels with the LRNG
execute concurrently, the a false-positive permanent failure now happens
with a probability of 220 · α = 2−40 which again falls into the range of
alpha stipulated by [5] section 4.3.

The intermittent failure will always trigger a reset of the offending entropy
source. The permanent failure is therefore only intended in case the LRNG
operates as part of a FIPS 140-3 module. If the LRNG is outside of a FIPS
module, the permanent failure does not need to be considered. The reason is
that with constant health test failures, the entropy source is effectively disabled
anyway as it does not produce data. Yet, it has the capability to recover in case
the environment changes such that no health test errors occur.

When the LRNG operates as part of a FIPS module, the permanent health
failure, the entire FIPS module must cease to operate. One way to ensure that is
by setting the kernel boot time variable of lrng_es_mgr.lrng_panic_on_permanent_health_failure
to true. This will panic the kernel when a permanent health failure is detected
which ensures that the FIPS module will cease to be operational.

3.3.38 SP800-90B Section 4.3 Requirement 4

The LRNG applies a startup health test of 1,024 noise source samples. Addi-
tional tests are applied. The collected noise source samples are re-used for the
generation of random numbers if the startup test was successful.

3.3.39 SP800-90B Section 4.3 Requirement 5

The noise source supports on-demand testing in the sense that the caller may
restart the kernel.

3.3.40 SP800-90B Section 4.3 Requirement 6

The health tests are applied to the raw, unconditioned time stamp data di-
rectly obtained from the noise source before they are injected into the per-CPU
collection pool and further processed with the hash conditioning component.
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3.3.41 SP800-90B Section 4.3 Requirement 7

The health tests are documented with section 2.5.2.
The tests are executed as follows:

• During startup, the RCT and the APT are applied to 1,024 samples. The
startup test can be triggered again when the caller reboots the kernel.

• At runtime, the RCT is applied to each received time stamp. The APT
collects 512 time stamps. The APT is calculated over all 512 time stamps.
If the test fails, the entire LRNG is reset to drop all existing entropy and
the startup testing is performed again.

3.3.42 SP800-90B Section 4.3 Requirement 8

There are no currently known suspected noise source failure modes.

3.3.43 SP800-90B Section 4.3 Requirement 9

N/A as the noise source is pure software. The software is expected to execute
on hardware operating in its defined nominal operating conditions.

3.3.44 SP800-90B Section 4.4

The health tests described in section 2.5.2 are applicable to cover the require-
ments of SP800-90B health tests.

The SP800-90B compliant health tests are implemented with the following
rationale:

RCT The Repetition Count Test implemented by the LRNG compares two
back-to-back time stamps to verify that they are not identical. If the
number of identical back-to-back time stamps reaches the cut-off value of
30, the RCT test raises a failure that is reported and causes a reset the
LRNG. The RCT uses the a cut-off value that is based on the following:
α = 2−30 compliant to FIPS 140-2 IG 9.8 and compliant to SP800-90B
which mandates this value to be in the range 2−20 ≤ α ≤ 2−40. In
addition, one time stamp is assumed to at least provide one bit of entropy,
i.e. H = 1. When applying these values to the formula given in SP800-90B
section 4.4.1, the cut-off value of 31 is calculated.
When the RCT passes, the counter is set to zero for the next time delta
to arrive. In mathematical terms, the verification of back-to-back values
being not identical is the calculation of the first discrete derivative of the
time stamp to show that it is not zero. In addition, the LRNG enhances
the RCT by calculating also the second and third discrete derivative of the
time stamp to be concatenated with the per-CPU collection pool. With
that, up to 8 consecutive time stamp values are assessed. All derivatives
must always be non-zero in order to pass the RCT. If one discrete deriva-
tive shows a zero, the RCT counter is increased. Thus, the addition of
the second and third derivative makes the RCT even more conservative.
Hence, the first discrete derivative is considered to be identical to the
“approved” RCT specified in SP800-90B section 4.4. In addition, linear
and exponential patterns are identified with the second and third discrete
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derivative, respectively. As the additional pattern recognition do not in-
validate the mandatory pattern recognition, this RCT approach therefore
is considered to be an enhanced version of the “approved” RCT and thus
meets the requirement (a) of SP800-90B section 4.5.

APT The LRNG implements the Adaptive Proportion Test as defined in SP800-
90B section 4.4.2. As explained in other parts of the document, one time
stamp value is assumed to have (at least) one bit of entropy. Thus, the
cut-off value for the APT is 325 compliant to SP800-90B section 4.4.2
for non-binary data with a significance level of α = 2−30. The APT is
calculated using the four least significant bits of the time stamp. During
initialization of the APT, a time stamp is set as a base. All subsequent
time stamps are compared to the base time stamp. If both values are iden-
tical, the APT counter is increased by one. The window size for the APT
is 512 time stamps. The implementation therefore provides an “approved”
APT.

3.4 NIST Clarification Requests
In addition to complying with the requirements of FIPS 140-2 and SP800-90B,
NIST requests the clarification of the following questions.

3.4.1 Sensitivity of Interrupt Timing Measurements

The question that needs to be answered is whether the logic that measures the
interrupt timing is sensitive enough to pick up the variances of the interrupt
timing.

The sensitivity implies that timing variations are picked up and measured.
This is enforced by the stuck test enforced on each interrupt time stamp. That
stuck test requires that the first, second and third discrete derivative of the time
stamp must always be non-zero to accept that time stamp. Therefore, the time
stamp must vary for the received and processed interrupts which implies that
the LRNG health test ensures that the sensitivity of the time stamp mechanism
is sufficient.

3.4.2 Dependency Between Interrupt Timing Measurements

Another question that is raised by NIST asks for a rationale why there are no
dependencies between individual Jitter measurements.

The interrupts are always created by either explicit or implicit human ac-
tions. The LRNG measures the time stamp of the occurrence of these interrupts.
Thus, the LRNG measures the effects of operations triggered by human inter-
ventions. With the presence of a high-resolution time stamp that operates in the
nanosecond range and the assumption that only one bit of entropy is present in
one nanosecond time stamp of one interrupt event, the dependency discussion
therefore focuses on the one (or maybe up to four) least significant bit of the
nanosecond time stamp. With such high-resolution time stamps and considering
that only the least significant bit(s) is/are relevant for the LRNG, dependencies
are considered to be not present for these bits.
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3.5 SP800-90B Compliant Configuration
In order to use the LRNG SP800-90B compliant, the following configurations
and settings must be made. These settings are cover requirements for the
compile-time options found in the kernel configuration file .config of the run-
ning kernel. In addition, runtime configurations are to be considered as well.

The following compile-time settings must be observed:

• CONFIG_LRNG must be set to Y.

• CONFIG_LRNG_IRQ must be set to Y to enable the interrupt entropy source
to which the entropy discussion of this chapter applies to.

• CONFIG_LRNG_HEALTH_TESTS must be set to Y.

• Set the configuration option of CONFIG_LRNG_IRQ_ENTROPY_RATE to the
rate resulting from the entropy assessment outlined in section 3.6.

The following requirements apply to the runtime configuration:

• The kernel must be booted with the kernel command line option of fips=1
to enable the SP800-90B health test.

To verify that the SP800-90B compliance is achieved, the file /proc/lrng_type
provides an appropriate status indicator.

To achieve a compliant configuration to SP800-90A and SP800-90B, the
following requirements must be met:

• All requirements for SP800-90B documented in section 3.5 must be met.

• The Linux kernel configuration option of CONFIG_LRNG_DRBG must either
be set to Y or to M. If it is set to M (compile the code as loadable kernel
module), the kernel module lrng_drng_drbg.ko must be loaded into the
kernel before any caller to the LRNG requiring SP800-90A compliance is
active.

Only data obtained from the potentially blocking output interfaces of the LRNG
are SP800-90B compliant. If SP800-90C compliance is requested, these inter-
faces are also providing SP800-90C compliant output. Finally, the following
interfaces are DRG.3 compliant:

• /dev/random,

• getrandom system call invoked with a zero flag value,

• invoking the in-kernel lrng_get_random_bytes_full API,

• invoking the in-kernel lrng_get_random_bytes_pr API,

• invoking the in-kernel get_random_bytes when the callback registered
with add_random_ready_callback was invoked.

Any other interface is not considered to provide SP880-90B compliant data.
Note, invoking the in-kernel get_random_bytes API call after the wait_for_random_bytes

API call returns is not considered to be SP800-90B compliant because this call
does not validate whether the SP800-90B startup tests are complete. This func-
tion could be transformed to be SP800-90B compliant by changing the code to
wait for lrng_state_operational instead of lrng_state_min_seeded.
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3.6 Reuse of SP800-90B Analysis
To reuse the SP800-90B analysis provided in this document the following steps
must be performed on the target platform:

1. Obtain raw noise data through the raw noise source interface on the in-
tended target platform as explained in section 3.3.3. The obtained raw
noise data must be processed by the SP800-90B tool to obtain an entropy
rate which must be above the entropy rate per time delta that is con-
figured with CONFIG_LRNG_IRQ_ENTROPY_RATE: the entropy rate must be
above 256/CONFIG_LRNG_IRQ_ENTROPY_RATE.

2. Obtain the restart noise data through the raw noise source interface on
the intended target platform as explained in section 3.3.3. The obtained
raw noise data must be processed by the SP800-90B tool to verify:

(a) the sanity test to apply to the noise restart data must pass, and
(b) the minimum of the row-wise and column-wise entropy rate must not

be less than half of the entropy rate from measurement (1) and the
entropy assessment of the noise source based on the restart data must
be at least entropy rate per time stamp mentioned in (1).

If these steps are successfully mastered the user would now satisfy all SP800-90B
criteria and thus does not need to prepare his own SP800-90B analysis since the
document we discuss here covers all other aspects of the SP800-90B analysis.

The tool set provided as part of LRNG library code distribution provides
the measurements and validation tools.

4 Scheduler Entropy Source Assessment
TBD

5 LRNG Specific Configurations
The LRNG offers a secure and appropriate set of features with the default con-
figuration. Yet, use cases may arise where the LRNG should exhibit a different
behavior. The flexibility of the LRNG allows a various configurations that are
intended to meet different requirements.

5.1 SP800-90C Compliance
The specification of SP800-90C defines construction methods to design non-
deterministic as well as deterministic RNGs. As the specification is currently in
draft form, the latest available draft from January 21, 2021 is applied.

The specification defines different types of RNGs where the following map-
ping to the LRNG applies:

• The LRNG follows the construction of RBG2(NP) with the following en-
tropy sources whose outputs are concatenated:
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– Auxiliary external entropy sources, such as user-space rngd or the
in-kernel add_hwgenerator_randomness API, if available. The ad-
ministrator is responsible to guarantee that this entropy source is
compliant to SP800-90B if it alters the entropy estimator maintained
by the LRNG via the RNDADDENTROPY IOCTL or by providing an
entropy estimate via add_hwgenerator_randomness. Depending on
the selected entropy source, this may be a physical or non-physical
entropy source. Note, all data maintained by the auxiliary pool are
processed with a vetted conditioning component. Thus, to achieve
full SP800-90C compliance for such entropy sources, only one should
feed data credited with entropy into the auxiliary pool.

– Interrupt entropy source is the only entropy source that is fully main-
tained as part of the LRNG and is subject to a full entropy analysis
following section 3.3. Furthermore, it is claimed to be fully SP800-
90B compliant.

– Scheduler entropy source is the only entropy source that is fully main-
tained as part of the LRNG and is subject to a full entropy analysis
following 4. Furthermore, it is claimed to be fully SP800-90B com-
pliant.

– The Jitter RNG entropy source is used by the LRNG. This entropy
source is a fully self-contained SP800-90B entropy source. Its SP800-
90B compliance must be assessed separately. If SP800-90B compli-
ance cannot be demonstrated, it must be awarded to credit zero bits
of entropy with the configuration documented in section 2.9.1 or by
completely disabling it by not selecting the kernel configuration op-
tion of CONFIG_LRNG_JENT.

– The CPU entropy source is used by the LRNG, if available. On In-
tel, this uses RDSEED. This entropy source is a fully self-contained
SP800-90B entropy source. Its SP800-90B compliance must be as-
sessed separately. If SP800-90B compliance cannot be demonstrated,
it must be awarded to credit zero bits of entropy with the configu-
ration documented in section 2.10.1 or by completely disabling it by
not selecting the kernel configuration option of CONFIG_LRNG_CPU.

By applying Method 2 of section 3.3 in SP800-90C, the entropy provided
by all entropy sources can be added which is applied when the LRNG
constructs the temporary seed buffer as shown with equation 3.11.

• During instantiation of the DRBG, the LRNG tries to seed the DRBG
with at least (DRBG security strength) + 128 bits = 384 bits of entropy.
Only when this amount of entropy was obtained to seed the DRBG is
considered to be fully seeded and is allowed to produce output. Note, the
the following DRBG types are provided by the LRNG:

– CTR DRBG with AES 256 using a derivation function (selected by
default)

– Hash DRBG with SHA2-512
– HMAC DRBG with SHA2-512
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If the SP800-90C construction is to be used as the “randomness source”
following bullet 5 of section “Note to Reviewer” in the SP800-90C docu-
ment to seed another DRBG with a security strength of 256 bits, either
the hash or HMAC DRBG should be used as they are capable of trans-
porting up to 512 bits of entropy and are initially seeded with 384 bits of
entropy. Thus, the SP800-90C seeding requirement of providing 384 bits
of entropy can be satisfied.

• Reseeding of the DRBG can be triggered by either writing data into /de-
v/random or by the RNDRESEEDCRNG IOCTL. The LRNG guarantees that
the reseed operation is only performed if at least 128 bits of entropy is
available. If this is not available, the reseed is attempted during the next
generate operation. Yet, the generate operation is conducted in any case.
Nonwithstanding, the LRNG always attempts to obtain 256 bits of en-
tropy for reseeding. This is considered appropriate because the upper limit
when a reseed is ultimately triggered is 220 generate operations or after
10 minutes, whatever is reached earlier. If the DRNG cannot be reseeded
it will continue to operate until the next time this threshold is reached.
The DRNG will revert to an unseeded stage if it cannot be reseeded by
the time it serviced 230 generate requests since the last successful seeding
operation.

The requirements from section 6.3 SP800-90C are met as follows:

1. The administrator must use the SP800-90A DRBG LRNG extension as
mentioned above to satisfy the requirement.

2. The DRBG can be ACVTS-tested to show compliance to SP800-90A. The
entropy sources are to be assessed pursuant to SP800-90B as outlined in
the above listing.

3. See the above listing for the reseeding support.

4. If an entropy source is not validated, its entropy estimation must be set
to zero as outlined in the above listing.

5. N/A as the LRNG is claimed to conform with RBG2(NP).

6. The entropy sources are listed above. By using concatenation of the output
of all entropy sources, the Method 2 SP800-90C is implemented. The
entropy of all entropy sources are added.

7. Technically it is possible that all DRBG security strengths can be chosen
as the DRBG supports all security strengths. Yet, the LRNG interfaces
currently only support the highest security strength of 256 bits to ensure
that it can be used for all use cases.

8. The entropy source output is destroyed immediately after it was used to
(re)seed the DRBG. Note, the use of the seed for backward secrecy by
injecting it into the auxiliary pool via the vetted conditioning operation is
considered to not violate the requirement as the seed data is unrecoverable.
Furthermore, the seed data is not credited with any entropy during the
backward secrecy operation. Therefore, the seed data is only used to
further mix the internal state of the LRNG.
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9. N/A as the LRNG does not use a CTR DRBG without derivation function.

10. The LRNG attempts to instantiate a DRBG with 3/2s bits of entropy.
Only if this succeeds, the DRBG becomes available. The LRNG attempts
to reseed a DRBG with s bits of entropy. See the rationale above for the
discussion about the minimum entropy size of the reseeding operation of
128 bits.

11. The DRBG only provides output once it is fully seeded as mandated by
SP800-90C.

12. An error occurring in the interrupt entropy source triggers a full reset
of the LRNG as outlined in section 2.5.2. If the other entropy sources
are subject to a health test failures, SP800-90B mandates that they do
not produce entropy. Before the first initialization of the DRBG, it is
subject to a power-on self test. The LRNG performs power-up self tests
as outlined in section 2.16.

13. This requirement is implicitly met by the fact that the LRNG only pro-
vides DRBGs with the maximum security strength of 256 bits.

5.1.1 RBG2(P) Construction Method

It is possible to convert the LRNG into the SP800-90C type of RBG2(P). This
approach requires that only physical entropy sources are credited with entropy.
The following specific settings must be applied in addition to the general con-
figurations listed in the next section:

• Configure the interrupt entropy source to not credited entropy: compile
the kernel with the kernel configuration option of CONFIG_LRNG_IRQ_ENTROPY_RATE=4294967295.
This setting ensures that the interrupt entropy source still collects data,
but it is not credited with entropy. If it shall be completely disabled, the
compile time option of CONFIG_LRNG_IRQ must be unset.

• Configure the scheduler entropy source to not credited entropy: compile
the kernel with the kernel configuration option of CONFIG_LRNG_SCHED_ENTROPY_RATE=4294967295.
This setting ensures that the scheduler entropy source still collects data,
but it is not credited with entropy. If it shall be completely disabled, the
compile time option of CONFIG_LRNG_SCHED must be unset.

• Configure the Jitter RNG entropy source to not credit entropy: compile
the kernel with the kernel configuration option of CONFIG_LRNG_JENT_ENTROPY_RATE=0.
If the value is set to 0, the entropy source still collects data, but it is not
credited with entropy. If it shall be completely disabled, the compile time
option of CONFIG_LRNG_JENT must be unset.

• Configure the legacy RNG entropy source to not credit entropy: compile
the kernel with the kernel configuration option of CONFIG_LRNG_LEGACY_RNG_ENTROPY_RATE=0.
If the value is set to 0, the entropy source still collects data, but it is not
credited with entropy. If it shall be completely disabled, the compile time
option of CONFIG_LRNG_LEGACY_RNG must be unset.
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• Adjust the entropy rate of the CPU entropy source as needed: compile the
kernel with the kernel configuration option of CONFIG_LRNG_CPU_ENTROPY_RATE=256
when full entropy is assumed to be provided by the CPU entropy source.
In general, set any value between 0 and 256 if the default value is not ap-
propriate. If the value is set to 0, still collects data, but it is not credited
with entropy. If it shall be completely disabled, the compile time option
of CONFIG_LRNG_CPU must be unset.

• If other hardware entropy sources are considered deliver entropy, they may
inject data into the LRNG via either the add_hwgenerator_randomness
or via the IOCTL RNDADDENTROPY. Note, only physical entropy sources
must provide data that is credited with entropy. Any other data fed into
the LRNG via those interfaces must not be credited with entropy.

Important note: The entropy rate provided by the CPU entropy source plus
all other physical entropy sources together must ensure they provide sufficient
entropy. “Sufficient entropy” is provided when the entropy rate equals the hash
type used by the LRNG. For example, if /proc/lrng_type shows that SHA2-256
is used, than 256 bits of entropy is sufficient. If SHA2-512 is used, 512 bits of
entropy should be provided.

Naturally, the hardware entropy sources that are credited with entropy must
be compliant to SP800-90B.

In case the RBG2(P) construction method is achieved, the following addi-
tional requirement from section 6.3 SP800-90C is met:

• Requirement 5: With the required configuration mentioned before the
LRNG will only count the physical entropy sources towards fulfilling the
requested amount of entropy.

5.1.2 SP800-90C Compliant Configuration

SP800-90C compliance is only achieved when all of the following settings are
achieved.

The following compile-time settings must be observed:

• The option CONFIG_RANDOM_DEFAULT_IMPL must not be set to ensure that
the LRNG provides the implementation of all interfaces like /dev/random,
/dev/urandom or getrandom.

• The kernel configuration option CONFIG_LRNG_OVERSAMPLE_ENTROPY_SOURCES
is set. This option guarantees the following:

– The final conditioning operation applied to the interrupt entropy
source as well as to the auxiliary pool require 64 additional bits of
entropy when obtaining data for the temporary seed buffer. This
complies with the requirement specified in section 4.3.2 SP800-90C
about vetted conditioning components. This ensures the conditioning
components provide full entropy.

– When the DRNG is initially seeded, it is attempted to be seeded
with 384 bits of entropy at least. This complies with the requirement
specified in section 6.2.1 bullet 2 of SP800-90C requiring 3/2s bits
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of entropy for the initial seeding. Note, the LRNG applies a step-
wise seeding of 32, 128 and 256 bits of entropy during initialization.
When the final step of 256 bits is to be performed, the LRNG will
guarantee that at least 384 bits of entropy are collectively pulled
from all entropy sources. Only if this is achieved, the SP800-90C
compliant-marked interfaces of the LRNG specified in section 3.5
will produce random numbers.

• The option CONFIG_LRNG_DRBG must be either set to yes or module. This
option ensures:

– The used hash for the conditioning function must be capable of main-
taining at least 384 bits of entropy. This is commonly only achieved
with SHA-384 or SHA-512. With this option, SHA-512 is used.

– SP800-90C implies that the DRNG is always SP800-90A compliant
which is provided with this option.

– For an absolute strict compliance to SP800-90C, the SP800-90C DRBG
must be initialized with the 384 bits of entropy instead of being ini-
tialized with 32/128 bits as applied during early boot time. If you
want to absolutely guarantee that a DRBG is initialized with 384 bits
of entropy, you must compile the SP800-90A support as module (the
configuration CONFIG_LRNG_DRBG=m) and you must use the following
approach to load the kernel module of lrng_drng_drbg.ko:

1. Either open /dev/random and read at least one byte of data or
use the getrandom(2) system call without any specific option and
read one byte. When the request is satisfied, the initial seeding
steps of 32 and 128 bits are completed.

2. Insert the lrng_drng_drbg.ko kernel module. The LRNG goes
back to an unseeded stage until at least 384 bits of entropy are
present to initial seed the first DRBG. All subsequent DRBGs
are equally seeded once 384 bits of entropy are present for each.

• CONFIG_RANDOM_TRUST_CPU must not be set unless the CPU-based entropy
source (e.g. RDSEED on Intel) have an SP800-90B compliant entropy
assessment and comply with all requirements from SP800-90B.

• CONFIG_RANDOM_TRUST_BOOTLOADER must not be set unless the data pro-
vided by the boot loader have an SP800-90B compliant entropy assessment
and comply with all requirements from SP800-90B.

• Enable CONFIG_LRNG_IRQ configure the interrupt entropy source compli-
ant to SP800-90B as outlined in section 3.5 if the interrupt entropy source
is considered to be compliant to SP800-90B by accepting the assessment
in chapter 3 and by applying the testing of the entropy source as outlined
in section 3.6 on the target system.

• Enable CONFIG_LRNG_SCHED configure the scheduler entropy source com-
pliant to SP800-90B as outlined in section 4 if the scheduler entropy source
is considered to be compliant to SP800-90B by accepting the assessment
in chapter 4 and by applying the testing of the entropy source as outlined
in this chapter on the target system.
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• The kernel must be compiled with the kernel configuration option of
CONFIG_LRNG_CPU_ENTROPY_RATE=0 or unset the option CONFIG_LRNG_CPU
unless the CPU-based entropy source (e.g. RDSEED on Intel) have an
SP800-90B compliant entropy assessment and comply with all require-
ments from SP800-90B.

• The kernel must be compiled with the kernel configuration option of
CONFIG_LRNG_JENT_ENTROPY_RATE=0 or unset the option CONFIG_LRNG_JENT
unless the Jitter RNG entropy source has an SP800-90B compliant entropy
assessment and comply with all requirements from SP800-90B19.

The following requirements apply to the runtime configuration:

• The kernel must be booted in FIPS mode to ensure the oversampling for
the conditioning and the initial seeding of the DRBG is applied. This is
achieved with the kernel command line option of fips=1.

• If the lrng_drng_drbg kernel module is compiled (i.e. CONFIG_LRNG_DRBG
was set to module), the administrator must ensure the lrng_drng_drbg
kernel module is loaded into the kernel before the first user of the LRNG
accessing the SP800-90C compliant interfaces appears. Note: it is permis-
sible to implement a separate kernel module that provides the DRBG and
the hash operation following the API defined with the lrng.h header file.
However, in this case the following conditions must hold:

– The DRBG must be SP800-90A compliant and provide 256 bits of
security strength. It is permissible that the invocation of this DRBG
may cause the caller to sleep. The DRBG is never called in atomic
contexts.

– If the CTR DRBG is used, it must provide a derivation function.
– The hash that is specified with the kernel module must provide at

least 384 bits of output size and security strength (i.e. either one of
the following SHA2-384, SHA2-512, SHA3-384 or SHA3-512). The
implementation of the hashes must not sleep or use a mutex. The
hash is called in atomic contexts.

• All kernel code that uses the add_hwgenerator_randomness must either
invoke the function with a zero for the entropy_bits parameter or must
have an SP800-90B compliant entropy assessment and comply with all
requirements from SP800-90B. For example, this call is invoked by the
ATH9K driver or the hardware random number generator driver frame-
work.

• Filling up the LRNG with entropy using either a user-space RNGD via the
IOCTL RNDADDENTROPY or a kernel-space via the function add_hwgenerator_randomness
is allowed. However, the caller is only allowed to claim entropy associated
with the data and thus increase the LRNG entropy estimation if the en-
tropy source is SP800-90B compliant with its own entropy assessment.

19At the time of writing, the user space Jitter RNG is SP800-90B compliant. Patches
ensuring the in-kernel variant is SP800-90B compliant as well when into the kernel for version
5.8.
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To verify that the SP800-90C compliance is achieved, the file /proc/lrng_type
provides an appropriate status indicator. The SP800-90C compliant is ensured
only for the respectively marked LRNG interfaces specified in section 3.5. All
other interfaces are not providing SP800-90C compliant random numbers.

5.2 FIPS 140-3 IG D.K
To comply with the FIPS 140-3 IG D.K, requirements, the considerations of
section 5.1 are applicable.

In addition, IG D.K mandates that in order to seed a DRBG from a primary
DRBG, the primary DRBG must behave like a conditioning functions - only as
much data is allowed to be produced as entropy was received. This implies that
the primary DRBG must be reseeded before delivering data to the caller. The
LRNG’s DRBG can be operated in this manner with the following invocation
methods:

• When opening /dev/random with the O_SYNC flag, the DRBG behaves
FIPS 140-3 IG D.K compliant.

• When invoking the getrandom system call with the flag GRND_RANDOM, the
DRBG behaves FIPS 140-3 IG D.K compliant.

Please note that using the interfaces in the mentioned manner may imply short
reads the caller must handle. For example, if the caller wants 384 bits of data
from the DRBG, the interfaces invoked with the mentioned flags will at most
return 256 bits as this is the maximum amount of entropy that can be processed.
The LRNG interfaces will report the amount of data returned. The caller must
process the returned information and re-invoke the LRNG interface again until
sufficient data is returned.FIPS 140-3 Considerations

For the following entropy sources, the LRNG contains the SP800-90B com-
pliant detection of a permanent failure as outlined in section 3.3.37:

• Jitter RNG

• Interrupt entropy source

• Scheduler-based entropy source

If one of those entropy sources delivers entropy and the LRNG is part of a FIPS
module, the permanent health failure must trigger the ceasing of all operations
of the FIPS module. To ensure that, the LRNG can be booted with the kernel
command line option documented in section 3.3.37 which enforces a panic upon
reaching a permanent health error.

5.3 AIS 20 / 31
The German BSI defines construction methods of RNGs with AIS 20/31 with
the revision from 2022 available as draft at the time of writing. In particular,
this document defines different classes of RNGs where the LRNG is capable of
meeting class NTG.1.

The NTG.1 requirements are met as follows:

• NTG.1.1: The LRNG offers interfaces to collect raw unconditioned en-
tropy as outlined in section 2.17.
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• NTG.1.2: The LRNG maintains an entropy estimator for the auxiliary
pool as well as each entropy pool. The credit operation of the LRNG is
documented in section 2.1. To outline the debit operation section 3.3.6
provides several examples showing the approach. For each of the fast
entropy sources, the LRNG obtains the entropy estimate when fetching
data from them and applies this estimate when seeding the DRNG.

• NTG.1.3: The LRNG provides a switchable DRNG support using a ChaCha20-
based DRNG which is documented in section 2.13.2. Furthermore, the
LRNG allows using an SP800-90A compliant DRBG (all three types of
CTR-DRBG, Hash DRBG and HMAC DRBG are supported). All those
DRNGs are characterized as DRG.3 since they all support backward se-
crecy and use contemporary cryptographic primitives for the state transi-
tion as well as output generation.

• When compiling the LRNG with the option CONFIG_LRNG_AIS2031_NTG1_SEEDING_STRATEGY
enabled and booting the kernel with the kernel command line option of
lrng_es_mgr.ntg1=1, the initial seeding strategy of the LRNG with the
32/128/256 bit reseeds is altered to 32/128 bits followed by two entropy
sources required to deliver 220 bits of entropy. Only when the last step is
completed, the blocking output interfaces listed in section 3.5 are released
to produce random numbers. This implies that those interfaces operate
NTG.1-compliant.

• NTG.1.5: The output functions of the offered DRNGs are all based on
contemporary cryptographic primitives. Therefore, the output is assumed
that it cannot be distinguished from random number output sequences of
an ideal RNG. This is supported by the fact that the SP800-90A DRBGs
are successfully passing the NIST CAVP test suite. The ChaCha20 DRNG
can be tested using the ChaCha20 DRNG stand-alone implementation
which is derived from the LRNG implementation. The tester can verify
that both operate identical because the power-on self test in the stand-
alone ChaCha20 DRNG implementation is identical to the LRNG power-
up self test found in lrng_lrng_selftest.c.

• NTG.1.6: Using the entropy analysis tools such as the NIST SP800-90B
test tools, results shown in appendix C can be obtained for the interrupt
entropy source. For the second entropy source, such assessment must
be performed as well. For example, the Jitter RNG is provided with a
complete independent entropy assessment. When comparing the results
with the heuristic entropy estimate, it is clear that the LRNG collects more
entropy than it credits. Further, considering the mathematical operations
processing the raw entropy data outlined in section 3.3.5, the processing
is considered to not destroy entropy.

Note, the LRNG also complies with the AIS 20/31 version 2011 where all state-
ments from above comply with the exception of NTG.1.4. This requirement is
met as follows:

• NTG.1.4: Due to the blocking behavior and only returning as many bits
of data as entropy is available via /dev/random opened with O_SYNC, or
using getrandom(2) with GRND_RANDOM the LRNG meets the requirement.
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5.3.1 NTG.1 Compliant Configuration - Version 2022

To achieve NTG.1 compliant operation, the following configuration must be
applied. It is permissible to use the configuration in parallel with the SP800-
90B and SP800-90C configurations.

The following compile-time settings must be observed:

• The LRNG compile time option of CONFIG_LRNG_AIS2031_NTG1_SEEDING_STRATEGY
must be enabled.

• The LRNG must have access to two entropy sources which are capable of
delivering 220 bits of entropy each. It is not necessary that the entropy
sources deliver the 220 bits in one call, but may provide the required
amount throughout multiple calls. The LRNG performs the invocation as
often as needed to collect the 220 bits. For example, the interrupt entropy
source can deliver 220 bits of entropy In addition, the Jitter RNG entropy
source is capable of delivering 220 bits of entropy when booting the kernel
with the kernel compile-time option of CONFIG_LRNG_JENT_ENTROPY_RATE
is set to any value larger than zero. See section 2.9.1 for details on the
Jitter RNG entropy rate.

The following requirements apply to the runtime configuration:

• None.

To verify that the NTG.1 compliance is achieved, the file /proc/lrng_type pro-
vides an appropriate status indicator. The NTG.1 (2022) compliant is ensured
only for the respectively marked LRNG interfaces specified in section 3.5. All
other interfaces are not providing SP800-90C compliant random numbers.

5.3.2 NTG.1 Compliant Configuration - Version 2011

To achieve NTG.1 compliant operation, the following configuration must be
applied. It is permissible to use the configuration in parallel with the SP800-
90B and SP800-90C configurations.

The following compile-time settings must be observed:

• None

The following requirements apply to the runtime configuration:

• The caller must use /dev/random and open it with O_SYNC, getrandom(2)
with GRND_RANDOM.

To verify that the NTG.1 compliance is achieved, the file /proc/lrng_type pro-
vides an appropriate status indicator. The NTG.1 (2011) compliant is ensured
only for the respectively marked LRNG interfaces specified in section 3.5. All
other interfaces are not providing SP800-90C compliant random numbers.

5.3.3 DRG.4 / PTG.3 Compliant Configuration

The LRNG allows a configuration that would make the LRNG compliant to the
requirements of a DRG.4 as well as a PTG.3. This is achieved by deconfiguring
all entropy sources except one that provides the data from a PTG.2 entropy
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source. For example, an rngd can be created having access to a smart card that
is provides a PTG.2 entropy source. In this case, all other entropy sources must
be deactivated using the following runtime configuration.

The PTG.3 naturally can only be claimed if the PTG.2 entropy source is
part of the validation. If the PTG.2 entropy source is not part of the validation,
a DRG.4 must be claimed instead.

For achieving such compliance claim, the following compile-time configura-
tion must be applied:

• The kernel command line must contain the following setting to ensure the
interrupt entropy source is not credited with entropy: CONFIG_LRNG_IRQ_ENTROPY_RATE=4294967295.

• Configure the Jitter RNG entropy source to not credit entropy: boot the
kernel with the kernel compile-time option of CONFIG_LRNG_JENT=0. If
the value is set to 0, the entropy source is disabled.

• Adjust the entropy rate of the CPU entropy source to zero: boot the kernel
with the kernel compile-time option of CONFIG_LRNG_CPU_ENTROPY_RATE=0.
If the value is set to 0, the entropy source is disabled.

The following requirements apply to the runtime configuration:

• The PTG.2 entropy source delivers its entropy to the LRNG via either
the add_hwgenerator_randomness or via the IOCTL RNDADDENTROPY.

6 LRNG Comparison to legacy /dev/random
Tests to compare the LRNG with the legacy /dev/random are conducted to
analyze whether the LRNG brings benefits over the legacy implementation.

Note, this section applies to the legacy /dev/random implementation before
the Linux kernel version 5.18 was released. After the release of 5.18 with its
re-architecture, older LTS-kernels received the newer implementation as well.

6.1 Time Until Fully Initialized
The legacy /dev/random implementation feeds all entropy directly into the
CRNG until the kernel log message is recorded that the CRNG is initialized.
Only after that point, entropy is fed into the input_pool allowing the seeding
of the blocking_pool and thus generating data for /dev/random.

The LRNG also prints out a message when it is fully seeded. The following
test lists these two kernel log messages including their time stamp.

As mentioned above, the DRNG uses different entropy sources where only the
interrupt entropy source will always be present. Thus the test is first performed
with all entropy sources enabled followed by disabling the fast entropy sources
of CPU entropy source.

Listing 1: Time until fully initialized -- LRNG using all entropy sources
$ dmesg | grep "LRNG minimally seeded "
[ 1.718705] lrng_es_mgr : LRNG minimally seeded with 128 bits of entropy
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ dmesg | grep "LRNG fully seeded "
[ 2.056685] lrng_es_mgr : LRNG fully seeded with 256 bits of entropy
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ dmesg | grep " random : crng init done"
[ 20.932050] random : random : crng init done
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The test shows that the DRNG is minimally seeded 1.7 seconds after boot.
This is around the time when the initramfs is started. The DRNG is fully
seeded 2 seconds after boot which is long before systemd injects the legacy
/dev/random seed file into /dev/random and before the initramfs terminates.

The legacy /dev/random’s CRNG on the other hand is initialized with 128
bits of entropy at around 21 seconds after boot in this test round – other tests
show that it may even be initialized after 30 seconds and more. By that time
the complete boot process of the user space is already long completed.

The following test boots the kernel with the kernel command line options of
lrng_es_cpu.cpu_entropy=0 and lrng_es_jent.jent_entropy=0 to disable
the fast entropy sources.

Listing 2: Time until fully initialized -- LRNG using only interrupt entropy
source
$ cat /sys/ module / lrng_es_cpu / parameters / cpu_entropy
0
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ dmesg | grep "LRNG minimally seeded "
[ 1.683981] lrng_es_mgr : LRNG minimally seeded with 128 bits of entropy
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ dmesg | grep "LRNG fully seeded "
[ 2.110482] lrng_es_mgr : LRNG fully seeded with 256 bits of entropy
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
[ 3.075414] lrng_drng : force reseed of DRNG on node 0

Even when the fast entropy sources are disabled, the LRNG is minimally
and fully initialized at the time the initramfs started.

During all testing, the LRNG was fully seeded before user space injected
the seed data into /dev/random as mandated by the legacy /dev/random im-
plementation. This point in time is identifiable with the forced reseeding of the
DRNG. The time of user space injecting the seed data into /dev/random marks
the point at which cryptographically relevant user space applications may be
started.

As the DRNG is fully seeded at the time of initramfs, user space daemons
requiring cryptographically strong random numbers are delivered such data.

6.2 Interrupt Handler Performance
The LRNG is invoked from the interrupt handler. Therefore, it is mandatory
that the code executed by the interrupt handler is as fast as possible. To illus-
trate the performance, the following measurement is made. The execution time
in CPU cycles is measured on one particular test system. Since the cycle count
is subject to some variations, an average cycle count is calculated.
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RNG Options Average
Cycle Count

LRNG with functionality compliant to legacy
/dev/random and using 8 LSB of time stamp

42

LRNG with health tests enabled, but no SP800-90B
compliance and using 8 LSB of time stamp

78

LRNG with SP800-90B compliant health tests 138
Legacy /dev/random implementation 97

Table 2: Average Cycle Count To Process One Interrupt Depending on Enabled
Functionality

The LRNG allows a compile-time option to set the collection size which
defines the size of the per-CPU collection pool. The table above shows the
measured number for the default collection size of 1,024 entries and the use
of the accelerated AVX2 SHA-512 hash operation. The following graph shows
the average cycle count for processing an interrupt depending on the collection
size, the used hash implementation (either the software SHA-256 provided with
the ChaCha20 DRNG or the AVX2 SHA-512 implementation used with the
DRBG). Finally, the graph shows the legacy /dev/random value as reference.

Figure 6.1: Average Cycle Count To Process One Interrupt Depending on Col-
lection Size

The graph shows that when using an accelerated hash implementation, the
average cycle count decreases. When increasing the collection size, the average
cycle count increases as well. Finally, the graph shows that the default collec-
tion size shows about the same performance as the legacy /dev/random. The
question must be raised, why not use the largest supported collection size as
default? The reason is the goal that the LRNG shall deliver entropy fast dur-
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ing boot time. The collected entropy is only available to the LRNG when it is
injected into the per-CPU entropy pool. The injection occurs only when the
per-CPU collection pool is completely filled. When the collection pool is large,
it takes longer before the entropy is available to the LRNG to seed the DRNG.
Thus, the default collection size is chosen to show a performance en-par with
the legacy /dev/random which also ensures a fast entropy collection during boot
time. Yet, a user can select a different size during compile time as needed.

Note, the interrupt handler performance can be even more increased by
disabling the continuous compression support. By either setting
CONFIG_LRNG_CONTINUOUS_COMPRESSION_DISABLED to hard-code disabling the
continuous compression support or by configuring
CONFIG_LRNG_SWITCHABLE_CONTINUOUS_COMPRESSION and to disable it at boot-
time, the hash operation during the interrupt handling can be disabled entirely.
This implies that the occasional hash operation in the interrupt handler is not
executed implying that the interrupt handler of the LRNG only concatenates
the received data into an array improving the performance even further.

6.3 LRNG Output Performance And DRNG Type
As documented above, the LRNG is capable of using all types of DRNG provided
by the Linux kernel. On the test system that executes within a KVM and on
top of an Intel Core i7 Whiskey Lake. CPU20, the following read speeds using
the getrandom system call are obtained with different read sizes indicated in the
following tables. These numbers give an indication on how much one DRNG
performs better over another21 and are presented in table 3. This table lists
the DRNG type, the type and implementation of the underlying cipher and the
performance in MBytes per second. Please note that the read sizes have been
chosen as follows: The small read sizes are based on the buffer size of the used
DRNG and do not require a kmalloc call in the lrng_read_common function.
The other values shall indicate the performance when using higher block sizes
up to the point the maximum request size is reached.

20This CPU offers AES-NI, and AVX2 that is used by the allocated AES and SHA imple-
mentations.

21Please note that the test system is a 64-bit system. On 64-bit systems, SHA-512 is faster
by a factor of almost 2 compared to SHA-256 when the output data size is segmented into 64
bytes – the SHA-512 block size.
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DRNG Type Cipher Cipher Impl. Read Size Performance
HMAC DRBG SHA-512 C 64 bytes 13.8 MB/s
HMAC DRBG SHA-512 AVX2 16 bytes 4.7 MB/s
HMAC DRBG SHA-512 AVX2 32 bytes 11.6 MB/s
HMAC DRBG SHA-512 AVX2 64 bytes 23.3 MB/s
HMAC DRBG SHA-512 AVX2 128 bytes 38.3 MB/s
HMAC DRBG SHA-512 AVX2 4096 bytes 92.1 MB/s
Hash DRBG SHA-512 C 64 bytes 27.9 MB/s
Hash DRBG SHA-512 AVX2 16 bytes 13.1 MB/s
Hash DRBG SHA-512 AVX2 32 bytes 25.9 MB/s
Hash DRBG SHA-512 AVX2 64 bytes 51.1 MB/s
Hash DRBG SHA-512 AVX2 128 bytes 83.3 MB/s
Hash DRBG SHA-512 AVX2 4096 bytes 217.8 MB/s
CTR DRBG AES-256 C 16 bytes 15.4 MB/s
CTR DRBG AES-256 AES-NI 16 bytes 24.4 MB/s
CTR DRBG AES-256 AES-NI 32 bytes 49.3 MB/s
CTR DRBG AES-256 AES-NI 64 bytes 96.2 MB/s
CTR DRBG AES-256 AES-NI 128 bytes 177.1 MB/s
CTR DRBG AES-256 AES-NI 4096 bytes 1.247 GB/s
ChaCha20 ChaCha20 C 16 bytes 42.0 MB/s
ChaCha20 ChaCha20 C 32 bytes 84.5 MB/s
ChaCha20 ChaCha20 C 64 bytes 131.0 MB/s
ChaCha20 ChaCha20 C 128 bytes 194.7 MB/s
ChaCha20 ChaCha20 C 4096 bytes 550.3 MB/s

Legacy /dev/random SHA-1 C 10 bytes 12.9 MB/s
Legacy /dev/random ChaCha20 C 16 bytes 29.2 MB/s
Legacy /dev/random ChaCha20 C 32 bytes 58.6 MB/s
Legacy /dev/random ChaCha20 C 64 bytes 80.0 MB/s
Legacy /dev/random ChaCha20 C 128 bytes 118.7 MB/s
Legacy /dev/random ChaCha20 C 4096 bytes 220.2 MB/s

Table 3: LRNG performance on 64-bit

In addition, table 4 documents the performance on 32 bit using the same
hardware to have a comparison to the 64-bit case. Note, the CTR DRBG
performance for large blocks can be increased to more than 2 GB/s when
DRBG_CTR_NULL_LEN and DRBG_OUTSCRATCHLEN in crypto/drbg.c is increased
to 4096.
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DRNG Type Cipher Cipher Impl. Read Size Performance
HMAC DRBG SHA-512 C 16 bytes 1.4 MB/s
HMAC DRBG SHA-512 C 32 bytes 2.1 MB/s
HMAC DRBG SHA-512 C 64 bytes 5.5 MB/s
HMAC DRBG SHA-512 C 128 bytes 9.0 MB/s
HMAC DRBG SHA-512 C 4096 bytes 22.8 MB/s
Hash DRBG SHA-512 C 16 bytes 3.6 MB/s
Hash DRBG SHA-512 C 32 bytes 7.2 MB/s
Hash DRBG SHA-512 C 64 bytes 14.5 MB/s
Hash DRBG SHA-512 C 128 bytes 22.5 MB/s
Hash DRBG SHA-512 C 4096 bytes 46.3 MB/s
CTR DRBG AES-256 AES-NI 16 bytes 10.3 MB/s
CTR DRBG AES-256 AES-NI 32 bytes 22.7 MB/s
CTR DRBG AES-256 AES-NI 64 bytes 45.5 MB/s
CTR DRBG AES-256 AES-NI 128 bytes 84.2 MB/s
CTR DRBG AES-256 AES-NI 4096 bytes 397.4 MB/s
ChaCha20 ChaCha20 C 16 bytes 18.8 MB/s
ChaCha20 ChaCha20 C 32 bytes 38.0 MB/s
ChaCha20 ChaCha20 C 64 bytes 61.9 MB/s
ChaCha20 ChaCha20 C 128 bytes 102.5 MB/s
ChaCha20 ChaCha20 C 4096 bytes 346.5 MB/s

Legacy /dev/random SHA-1 C 10 bytes 9.4 MB/s
Legacy /dev/random ChaCha20 C 16 bytes 16.8 MB/s
Legacy /dev/random ChaCha20 C 32 bytes 32.9 MB/s
Legacy /dev/random ChaCha20 C 64 bytes 43.3 MB/s
Legacy /dev/random ChaCha20 C 128 bytes 61.7 MB/s
Legacy /dev/random ChaCha20 C 4096 bytes 153.2 MB/s

Table 4: LRNG performance on 32 bit

Note, to enable the different cipher implementations, they need to be stati-
cally linked into the kernel binary.

To ensure that the respective implementations of the cipher cores are used,
they must be statically linked into the kernel.

The reason for the fast processing of larger read requests lies in the concept
of the DRBG: the DRBG generates the requested number of bytes followed by
an update operation which generates a new internal state. Thus, the larger
the generate requests are, the less number of state update operations are per-
formed relative to the data size. The LRNG enforces that at most 212 bytes are
generated before an update is enforced as documented in section 2.13.1.

6.4 ChaCha20 Random Number Generator
The ChaCha20 DRNG is analyzed to verify the following properties:

• whether the self-feeding RNG ensures backward secrecy, and

• whether the absence of the CPU entropy source still produces white noise.
The compilation of the LRNG code is changed such that the ChaCha20 DRNG
is compiled. Also, for testing, the fast entropy sources have been disabled to

93



clearly demonstrate that the backward secrecy is ensured. This is followed by
obtaining random numbers from /dev/urandom and calculating the statistical
properties:

Listing 3: Statistical properties of ChaCha20 RNG with interrupt entropy source
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ dd if =/ dev/ urandom of=file count =1000
1000+0 Datensätze ein
1000+0 Datensätze aus
512000 bytes (512 kB , 500 KiB) copied , 0 ,00341658 s, 150 MB/s
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ ent file
Entropy = 7.999639 bits per byte.

Optimum compression would reduce the size
of this 512000 byte file by 0 percent .

Chi square distribution for 512000 samples is 257.07 , and randomly
would exceed this value 45.19 percent of the times .

Arithmetic mean value of data bytes is 127.4761 (127.5 = random ).
Monte Carlo value for Pi is 3.147902921 ( error 0.20 percent ).
Serial correlation coefficient is 0.001163 ( totally uncorrelated = 0.0).
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ ent -b file
Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 4096000 bit file by 0 percent .

Chi square distribution for 4096000 samples is 0.12 , and randomly
would exceed this value 73.24 percent of the times .

Arithmetic mean value of data bits is 0.5001 (0.5 = random ).
Monte Carlo value for Pi is 3.147902921 ( error 0.20 percent ).
Serial correlation coefficient is 0.000028 ( totally uncorrelated = 0.0).

The Chi-Square result indicates white noise and thus allows the conclusion
that the ChaCha20 DRNG operates as expected and that backward secrecy is
implemented correctly.

A fully stand-alone user-space implementation of the ChaCha20 DRNG is
provided at the ChaCha20 DRNG website. This implementation is an extraction
of the ChaCha20-based DRNG used for the LRNG and is provided to allow
studying the ChaCha20-based DRNG without the limitation of kernel space.

6.5 Legacy /dev/random Non-Compliance with SP800-
90B

In addition to the general concerns regarding the design and implementation of
the legacy /dev/random and their coverage in the LRNG given in [2] section
4.4, the following list enumerates the areas of non-compliance of the legacy
/dev/random with SP800-90B. As this document does not claim to provide an
SP800-90B entropy analysis of the legacy /dev/random, it is possible that more
areas of non-compliance are identified.

The legacy /dev/random implementation does not contain a repetitive count
test (RCT) and adaptive proportion test (APT) or a suitable alternative as
mandated in [5] sections 4.4 and 4.5. This includes neither a start-up health
test nor a run-time health test.

As mandated in [5] section 3.1.6, multiple noise sources are allowed but
only one noise source is to be credited with entropy. In particular the second
paragraph prohibits the crediting of entropy to closely related noise sources.
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The legacy /dev/random credits entropy to HID and block device events and
at the same time interrupt events. However, each HID and block device event
will always show up as an interrupt event as well considering that each HID and
block device is interacted with using interrupts. Thus, HID and block device
events are derivatives of interrupt events with respect to their entropy. Such
double counting of entropy events are prohibited by [5] section 3.1.6.

When using multiple noise sources such as add_disk_randomness, add_input_randomness
or add_interrupt_randomness, [5] section 3.1.6 requires the use of a vetted
conditioning component. However, the legacy /dev/random does not use any
vetted conditioning component.

To comply with SP800-90B, [5] section 3.1.5 requires an estimation of the
entropy behavior of the conditioning components. Such estimation is considered
to be a challenge to obtain due to the following different conditioning compo-
nents implemented by the legacy /dev/random and applied to data believed to
contain entropy:

• Some form of LSFR is implemented in the function crng_slow_load.

• The LFSR applied to the fast_pool state with 4 words when injecting new
data must be assessed.

• The LFSR used for the input_pool must be assessed.

• The conditioning component provided with the SHA-1 operation reading
the input_pool whose output is folded in half must be assessed. This
operation is almost a vetted conditioning component compliant to [5] sec-
tion 3.1.5.1.1 with the exception that the output of the SHA-1 operation
is folded in half. Although this document does not contain any analysis of
the legacy conditioning components, the reader is reminded of table 1 of
[5] section 3.1.5.1.1 which outlines the narrowest internal width of a vet-
ted conditioning component. For the hash operation it is marked as the
hash-function output size. Considering that the used operation is almost
a vetted conditioning component where only the output size is 80 bits due
to the folding operation, a careful analysis must be applied whether the
SHA-1 operation and its output-folding operation only delivers 80 bits of
output length as listed in table 1. If this is the case, it is very likely that
the legacy /dev/random entropy rate is limited to 80 bits of entropy due
to this operation. It is also to be noted that the SHA-1 operation does not
comply to the specification, such as that it does not use the correct initial-
ization vector and it does not perform the finalization operation including
the padding specified in section 5.1.1 [4].

• The ChaCha20 DRNG used to provide random numbers via the output
interfaces must be assessed as well.

Starting with kernel 5.8, a patch is added to the legacy /dev/random which
reads one 32-bit word straight from one fast_pool and injects that data into
the external random32 random number generator every time an interrupt is
received. Yet, the legacy /dev/random uses that same data to update its in-
put_pool with that data. The external random32 random number generator is
a non-cryptographic RNG using its data for network related operations where
the generated random numbers are visible to external entities. It is unclear
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how much entropy is lost due to this operation. Yet, the fact that data that is
believed to hold entropy is extracted from the legacy /dev/random while being
processed and at the same time being credited with entropy by the legacy /de-
v/random is considered to violate basic fundamental design requirements in [5]
section 2.2.

6.6 Use of Legacy RNG with LRNG
As outlined in section 2.11 the entropy source of the legacy RNG can be enabled
with the LRNG. However, this implies that the LRNG automatically disables:

• the IRQ entropy source,

• the common interface implementations, such as the getrandom system
call, /dev/random, /dev/urandom, or get_random_bytes.

Figure 6.2 outlines the disabled functions with the shaded areas.
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Figure 6.2: LRNG Functions Disabled with Legacy RNG

On the other hand, when the IRQ entropy source is enabled, the legacy RNG
must by definition be disabled. Again, the shaded areas marked with figure 6.3
outlines the LRNG mechanisms.
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A Thanks
Special thanks for providing input as well as mathematical support goes to:
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• Yi Mao
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• Dr. Matthias Peter

• Quentin Gouchet

B Source Code Availability
The source code, this document as well as the test code for all aforementioned
tests is available at http://www.chronox.de/lrng.

C SP800-90B Entropy Measurements
The following table presents the SP800-90B entropy measurements indicating
whether the found entropy is sufficiently high to support the entropy analysis
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given in section 3.3.5. Entropy values are given in bits and apply to the entropy
found in one time stamp generated when receiving an interrupt event. The
testing shown in this section provides the quantiative foundation of the entropy
analysis compliant to sections 3.3.6 as well as all other assessments required for
SP800-90B.

The testing collected raw unconditioned time stamps as delivered by the
file /sys/kernel/debug/lrng_testing/lrng_raw_hires. The entropy calcu-
lation is based on 1,000,000 raw time stamps collected by the LRNG. To speed
up the raw time stamp collection as well as to obtain a worst-case assessment,
all test systems were either ping-flooded or within an SSH-session a find / was
executed to generate a large number of interrupts in a short amount of time.
The ping-flood generator was in close network proximity (e.g. KVM host, or a
system at most one switch away from the test system).

The entropy result listing in the table below is generated as follows. The
time stamps generated by the LRNG for each interrupt event is extracted and
concatenated to form a bit-stream. This bit stream is processed by the NIST
SP800-90B entropy analysis tool to obtain an entropy rate. This entropy rate
is listed below. As the 8 least significant bits (LSB) of the time stamp are used
and the other bits are ignored by the LRNG, the entropy rate applies to those
8 data bits. As discussed in sections 3.3.6, the LRNG assumes that each time
stamp provides at least slightly more than one bit of entropy. As all values
in the table below show significantly more entropy even with the worst-case
measurement of 8 LSB, the LRNG underestimates the entropy existing in the
respective system. Thus, the LRNG is considered to operate securely on these
systems. The test complies with SP800-90B outlined in section 3.3.3.
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Test System Entropy of
1,000,000 Traces

Sufficient
Entropy

AMD Ryzen 5950X - 64-bit KVM
environment

4.531023 Y

AMD EPYC Milan 7713 2 sockets 128
cores 8-way NUMA

7.007947 Y

ARMv7 rev 5 1.9344 Y
ARMv7 rev 5

(Freescale i.MX53)22
7.07088 Y

ARMv7 rev 5
(Freescale i.MX6 Ultralite)23

6.638399 Y

ARM 64 bit AppliedMicro X-Gene
Mustang Board

5.599128 Y

Intel Atom Z530 – using GUI 3.38584 Y
Intel i7 7500U Skylake - 64-bit KVM

environment
3.452064 Y

Intel i7 8565U Whiskey Lake – 64-bit
KVM environment

7.400136 Y

Intel i7 8565U Whiskey Lake – 32-bit
KVM environment

7.405704 Y

Intel i7 8565U Whiskey Lake 6.871 Y
Intel Xeon E7 4870 8 sockets 160

CPUs 8-way NUMA
7.287790 Y

Intel Xeon Gold 6234 4.434168 Y
IBM POWER 8 LE 8286-42A 6.830712 Y
IBM POWER 7 BE 8202-E4C 4.233912 Y

IBM System Z z13 (machine 2964) 4.366368 Y
IBM System Z z15 (machine 8561) 5.691832 Y

MIPS Atheros AR7241 rev 124 7.157064 Y
MIPS Lantiq 34Kc V5.625 7.032740 Y

Qualcomm IPQ4019 ARMv726 6.638405 Y
SiFive HiFive Unmatched RISC-V U74 2.387470 Y

Table 6: LRNG Entropy Testing Results on Different Hardware

Some of the tested systems are quite old or are small embedded devices
demonstrating that even on older and smaller systems the LRNG does not
overestimate the available entropy when applying worst case conditions.

I am looking for test data from all kinds of systems. The less common a
system is the more I am interested in the data to verify that the basic entropy
estimate underlying the LRNG is correct. If you want to provide support, please
generate data using the LRNG test tool set specifically the test as documented
in sp80090b/recording/raw_entropy/README.md.

22USBArmory MK I
23USBArmory MK II
24Ubiquiti Nanostation M5 (xm)
25AVM Fritz Box 7490
26AVM Fritz Box 7520
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The effect of the application of the GCD can be clearly demonstrated with
the Intel Atom Z530 listed in the above table. The table shows the measurement
of without dividing the time stamp by the GCD. The GCD measurement during
boot detects that all time stamps have a GCD of 4 which means that the low
2 bits are always unset. Re-running the entropy measurements again on the
time stamp that is already divided by 4, the resulting entropy rate is 7.299
bits of entropy per the 8 LSB of the time stamp. This clearly shows that the
now considered 2 additional bits of the 8 LSB time stamp after the division
with the GCD provides additional entropy which again demonstrates that the
LRNG heuristic entropy estimation is safe. It may be noted that by considering
2 additional bits that are now considered for the entropy rate seemingly provide
more than 2 bits of entropy (before the GCD, the entropy rate was measured
at 3.38 which would imply that by adding 2 bits that may provide full entropy,
the rate cannot be higher than 5.38). This seeming inconsistency is due to the
fact that a new test run was conducted to get new entropy data. The ping flood
used to trigger the IRQ events may have been affected by network congestion
adding some delays to the interrupts caused by the ping flood.

D Auxiliary Testing
In addition to the testing conducted in appendix C, the following tests were
executed on all systems.

Stress testing (provided with the swap_stress.sh test script): A continu-
ous read operation on /dev/urandom is started with as many parallel threads as
CPUs, one continuous read operation on /dev/random is started, and one con-
tinuous read operation on /proc/lrng_type is started. While the read operations
are performed, 5,000 insmod / rmmod operations of the lrng_drng_drbg.ko
kernel module is performed to change the DRNG type and the read hash of
the entropy pool. A test that runs to completion shows that the locking of the
LRNG does not show deadlocks or unprotected critical code paths.

Performance testing (provided with lrng_get_speed.sh and speedtest.c
test code): The performance of the legacy /dev/random as well as the LRNG
for its ChaCha20 and all SP800-90A DRBG types is recorded. The LRNG
ChaCha20 DRNG is commonly significantly faster compared to the legacy DRNG.
The performance of the different DRBGs depends on the availability of accel-
erated cryptographic support. If such support is present, the DRBG may reach
the ChaCha20 performance and the CTR DRBG for larger block sizes it may
greatly exceed the ChaCha20 performance.

The self tests implemented when enabling CONFIG_LRNG_SELFTEST are veri-
fied to run successfully.

The boot process was analyzed to verify that the LRNG is fully seeded on
all systems around the time when the hard disks are mounted by the boot
environment. This implies that a fully seeded LRNG is available at the time
cryptographic user space services such as OpenSSH are started.

The following additional tests were conducted:

• use of automated test harness validating the different LRNG configura-
tions

• use of the kernel-internal KASAN test framework,
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• use of the kernel-internal UBSAN test framework,

• use of the kernel-internal lockdep test framework,

• use of the kernel-internal Sparse test framework,

• use of the kernel-internal memory leak detector test framework,

• use of the LRNG without compiling the kernel crypto API,

• syscall validation testing,

• test of the LRNG in atomic contexts,

• the regression test suite provided with the LRNG showing that the LRNG
operation with different configurations is as expected.
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F License
The implementation of the Linux Random Number Generator, all support mech-
anisms, the test cases and the documentation are subject to the following license.

Copyright Stephan Müller <smueller@chronox.de>, 2016 - 2022.
Redistribution and use in source and binary forms, with or without modifi-

cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
and the entire permission notice in its entirety, including the disclaimer of
warranties.
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2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

ALTERNATIVELY, this product may be distributed under the terms of the
GNU General Public License, in which case the provisions of the GPL are re-
quired INSTEAD OF the above restrictions. (This clause is necessary due to a
potential bad interaction between the GPL and the restrictions contained in a
BSD-style copyright.)

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ALL OF WHICH ARE HEREBY DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF NOT
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

G Change Log

Date LRNG
Ver-
sion

Change

2022-05-14 v45 New: Scheduler ES
New: Legacy RNG ES

New: lrng_get_random_bytes_full API
New: Kernel crypto API interface

New: HW_RAND interface
New: /dev/lrng interface
Small editorial changes

2022-05-30 v45 Fix typos in section 5.1
2022-07-31 v46 Add prediction resistance support and DRBG

chaining support with O_SYNC
/proc/sys/kernel/random/[poolsize|entropy_avail]

now only shows auxiliary pool
Editorial changes

Update to SP800-90C compliance specification
Update NTG.1 documentation
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Date LRNG
Ver-
sion

Change

2022-10-08 v47 Add GRND_RANDOM for getrandom(2)
Addition of GRND_SEED to getrandom(2)

AIS 20/31 (2011) compliance
Add AIS 20/31 (2022) compliance

2023-01-08 v48 Add forced seeding operation discussion
Add FIPS IG D.K documentation with 5.2

2023-02-22 v49 Add FIPS 140-3 discussion
2023-04-26 v50 Replace the notion of FIPS 140-3 degraded mode

with discussion of permanent vs intermittent health
failures

2023-09-04 v51 Add asynchronous Jitter RNG processing
2023-11-27 v52 Editorial changes
2024-01-22 v53 No changes for release v53
2024-03-21 v54 Update URLs to chronox.de
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