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Abstract
The venerable Linux /dev/random served users of cryptographic mech-

anisms well for a long time. Its behavior is well understood to deliver
entropic data. In the last years, however, the Linux /dev/random showed
signs of age where it has challenges to cope with modern computing en-
vironments ranging from tiny embedded systems, over new hardware re-
sources such as SSDs, up to massive parallel systems as well as virtualized
environments. This paper proposes a new approach to entropy collection
in the Linux kernel with the intention of addressing all identified shortcom-
ings of the legacy /dev/random implementation. The new Linux Random
Number Generator’s design is presented and all its cryptographic aspects
are backed with qualitative assessment and complete quantitative testing.
The test approaches are explained and the test code is made available to
allow researchers to re-perform these tests.

1 Introduction
The Linux /dev/random device has a long history which dates all the way back
to 1994 considering the copyright indicator in its Linux kernel source code file
drivers/char/random.c. Since then it provides good random data to cryp-
tographic and even non-cryptographic use cases. The Linux /dev/random im-
plementation was analyzed and tested by numerous researchers, including the
author of this paper with the BSI study on /dev/random including a quantia-
tive assessment of its internals [8] and presentations on /dev/random such as
[9] given at the ICMC 2015. All the studies show that the random data out of
/dev/random are highly entropic and thus have a good quality.

So, why do we need to consider a replacement for this venerable Linux
/dev/random implementation?

1.1 Linux /dev/random Status Quo
In recent years, the computing environments that use Linux have changed signif-
icantly compared to the times at the origin of the Linux /dev/random. By using
the timing of block device events, timing of human interface device (HID) events
as well as timing of interrupt events1, the Linux /dev/random implementation
derives its entropy.

1The additional sources of entropy from user space via an IOCTL on /dev/random as well
as specialized hardware implementing a random number generator should be left out of scope
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The block device noise source provides entropy by concatenating:

• the block device identifier which is static for the lifetime of the system and
thus provides little or no entropy,

• the event time of a block device I/O operation in Jiffies which is a coarse
timer and provides very limited amount of entropy, and

• the event time of a block device I/O operation using a high-resolution
timer which provides almost all measured entropy for this noise source.

The HID noise source collects entropy by concatenating:

• the HID identifier such as a key or the movement directions of a mouse
which provide a hard to quantify amount of entropy,

• the event time of an HID operation in Jiffies which again provides a very
limited amount of entropy, and

• the event time of an HID operation using a high-resolution timer that
again provides almost all measured entropy for this noise source.

The interrupt noise source obtains entropy by using:

• mixing the high-resolution time stamp, the Jiffies time stamp, the value of
the instruction pointer and the register content into a per-CPU fast_pool
where the high-resolution time stamp again provides the majority of en-
tropy – due to a high correlation between the interrupt occurrence and
the HID / block device noise sources the content of the fast_pool at the
time of injection into the input_pool is heuristically assumed to have one
bit of entropy, and

• injecting the content of the fast_pool into the input_pool entropy pool
once a second or after 64 interrupts have been processed by that per-CPU
fast_pool – whatever comes later.

The interrupt noise source therefore provides very little heuristically estimated
entropy considering the number of processed events compared to the other noise
sources.

What are the challenges for those aforementioned three noise sources?2

The entropy for block devices is believed to be derived from the physical
phenomenon of turbulence while the spinning disk operates and the resulting
uncertainty of the exact access time. In addition, when accessing a sector on the
disk, the read head must be re-positioned and the hard disk must wait until the
sector to be accessed is below the read head. Again, the uncertainty of exact
access time is the root cause of entropy. Let us assume that these assumptions
are all correct. The issue in modern computing environments is that fewer hard
disks with spinning platters are used. Solid State Disks (SSD) are more and
more in use where all of these assumptions are simply not applicable as these

as they are entropy sources that are not modeled by the Linux /dev/random. Further, as
these sources of entropy are rarely available, /dev/random cannot rely on their presence.

2Note, the legacy /dev/random implementation also uses information from device drivers
via add_device_randomness. That function can be considered as a noise source itself. As this
data is credited with zero bits of entropy, it is not subject to discussion here.

2



disks are not subject to turbulence, read head positioning or waiting for the spin
angle when accessing a sector. Furthermore, hard disks with spinning platters
more commonly have large caches where accessed sectors served out of that
cache are again not subject to the root causes of entropy. In addition, the more
and more ubiquitous use of Linux as guest operating system in virtual envi-
ronments again do not allow assuming that the mentioned physical phenomena
are present. Virtual Machine Monitors (VMM) may use large buffer caches3.
Also, a VMM may convert a block device I/O access into a resource access that
has no relationship with hard disks and spinning platters, such as a network
request. The same applies to Device Mapper setups. When a current Linux
kernel detects that it has no hard disks with spinning platters – which includes
SSDs or VMM-provided disks – or Device Mapper targets are in use, the Linux
kernel simply deactivates these block devices for entropy collection4. Thus, for
example, on a system with an SSD, no entropy is collected when accessing that
disk.

HIDs are commonly a great source of entropy as they deliver much entropy.
Each movement of the mouse by one tick triggers the entropy collection. Also,
each key press and release individually generates an event that is used for en-
tropy. However, a large number of systems run headless, such as almost all
servers either on bare metal or within a virtual machine. Thus, entropy from
HIDs is simply not present on those systems. Now, having a headless server
with an SSD, for example, implies that two of the three noise sources are un-
available. Such systems are left with the interrupt noise source whose entropy
contribution is rated very low by the legacy /dev/random entropy estimator
compared to the two unavailable noise sources. During testing, the author also
observed that HIDs attached to the system via USB are not used as entropy
source.

As already mentioned, the interrupt noise source’s entropy contribution is
rated very low compared to the other two noise sources. In addition, a key
aspect not to be overlooked is the following: a HID or block device event pro-
viding entropy to the respective individual noise sources processing generates
an interrupt. These interrupts are also processed by the interrupt noise source.
As mentioned above, the majority of entropy is delivered by the high-resolution
time stamp of the occurrence of such an event. Now, that event is processed
twice: once by the HID or block device noise source and once by the interrupt
noise source. Thus, initially the two time stamps of the one event (HID noise
source and interrupt noise source, or block device noise source and interrupt
noise source) used as a basis for entropy are highly correlated. Correlation
or even a possible reuse of the same random value diminishes entropy signifi-
cantly. The use of a per-CPU fast_pool with an LFSR and the injection of
the fast_pool into the core entropy pool of the input_pool after the receipt of
64 interrupts can be assumed to change the distribution of the input value such
that the correlation would be difficult to exploit in practice. Furthermore, the
assumption that at the time of injecting of a fast_pool into the input_pool
the contents of that fast_pool has only one bit of entropy counters correlation

3In case of KVM, the host Linux kernel uses its buffer cache which can occupy the entire
non-allocated RAM of the hardware.

4An interested reader may trace the Linux kernel source code where the flag
QUEUE_FLAG_ADD_RANDOM is cleared. One of the key locations is the function
sd_read_block_characteristics that disables SSDs as entropy source.

3



effects. As of now, however, the author is unaware of any quantitative study
analyzing whether the correlation is really broken and the fast_pool can be
assumed to have one bit of entropy.

The discussion shows that the noise sources of block devices and HIDs are
a derivative of the interrupt noise source. All events used as entropy source
recorded by the block device and HID noise source are delivered to the Linux
kernel via interrupts.

1.2 A New Approach
Given that for all three noise sources challenges are identified in modern com-
puting environments, a new approach for collecting and processing entropy is
proposed.

To not confuse the reader, the following terminology is used:

• The Linux /dev/random implementation in drivers/char/random.c is
called legacy /dev/random henceforth.

• The newly proposed approach for entropy collection is called Linux Ran-
dom Number Generator (LRNG) throughout this document.

The new approach implements the modeling of a slow noise source within the
LRNG based on the timing of interrupts and allowing other, even fast operating
noise sources to contribute entropy. As discussed above for the legacy /dev/ran-
dom, only the high-resolution time stamps deliver entropy for hardware events
and other information processed by the legacy /dev/random implementation
hardly have any entropy. This identification is used as a basis that solely the
timing of interrupts is used.

The cryptographic processing of the entropic data is implemented with a
well-known and well-studied deterministic random number generator: an SP800-
90A DRBG as defined in [1] – naturally excluding the NSA-sponsored Dual-EC
DRBG. The concept of the LRNG allows the selection of the used DRBG and
the backend cipher implementations at compile time. Further, the DRBG allows
the use of assembler or hardware accelerator supported cipher primitives by
relying on the kernel crypto API for all cipher primitives including the DRBG
implementation itself.

By using the kernel crypto API to provide the cipher primitives, other ben-
efits are reaped, such as the the self-test logic implemented by the kernel crypto
API test manager.

The LRNG reaches a cryptographically acceptable seed level much earlier
than the legacy /dev/random implementation. Commonly, the minimal entropy
threshold of 128 bits of the LRNG is reached before user space boots. The full
seed level of 256 bits is reached at the time the initramfs is executed but before
the root partition is mounted on standard Linux distributions.

The key idea is to focus on the collection of entropy from interrupts. Why
are interrupts considered? The following answers apply:

• As seen with the discussion of the legacy /dev/random above, the HID
and block devices noise sources must be considered as a derivative5 of an

5The term derivative indicates that they are strongly related and does not indicate that
the one is a mathematical derivative of the other.
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interrupt noise source. Said differently, when focusing on interrupts, the
HID and block devices are automatically covered with the exception of the
HID and block device specific information like the key ID which contribute
as mentioned very little entropy.

• The idea for the LRNG design came the author during a study currently
conducted for the German BSI analyzing the behavior of entropy and
the operation of entropy collection in virtual environments. As mentioned
above, modeling noise sources for block devices and HIDs is not helpful for
virtual environments. However, any kind of interaction with virtualized or
real hardware requires a VMM to still issue interrupts. These interrupts
are issued at the time the event is relayed to the guest. As on bare
metal, interrupts are issued based on either a trigger point generated by
the virtual machine or by external entities wanting to interact with the
guest. Irrespective whether the VMM translates a particular device type
into another device type (e.g. a block device into a network request), the
timing of the interrupts triggered by these requests is hardly affected by
the VMM operation. Thus entropy collection based on the time stamping
of interrupts is hardly affected by a VMM.

• By focusing on interrupt timing, only one value that can be obtained
without using any other Linux services needs to be processed. That al-
lows implementing a fast code path to process such information. As the
recording logic of the LRNG for interrupts must be hooked into a hot code
path of the Linux kernel, keeping only a tightly limited amount of LRNG
code in that code path benefits the overall performance.

• Considering the other values recorded by the legacy /dev/random im-
plementation contribute hardly any entropy based on the quantitative as-
sessment given with [8], maintaining them requires extra overhead without
significant benefit. Hence, they are disregarded in the LRNG design.

Before discussing the design of the LRNG, the goals of the LRNG design are
enumerated:

1. During boot time, the LRNG must already provide random numbers
with sufficiently high entropy. It is common that long-running daemons
with cryptographic support seed their deterministic random number gen-
erators (DRNG) when they start during boot time. The re-seeding of
those DRNGs may be very much later, if at all. Daemons that link with
OpenSSL, for example, use a DRNG that is not automatically re-seeded
by OpenSSL. If the author of such daemons is not careful, the OpenSSL
DRNG is seeded once during boot time of the system and never thereafter.
Hence seeding such DRNGs with random numbers having high entropy is
very important.
As documented in section 3.3 the DRBG is seeded with full security
strength of 256 bits during the first steps of the initramfs time after about
1.3 seconds after boot. That measurement was taken within a virtual ma-
chine with very few devices attached where the legacy /dev/random im-
plementation initializes the nonblocking_pool after 30 seconds or more
since boot with 128 bits of entropy. In addition, the LRNG maintains the
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information by when the DRBG is “minimally” seeded with 1286 bits of
entropy. This is commonly achieved even before user space is initiated.

2. The LRNG must be a drop-in replacement for the legacy /dev/random in
respect to the ABI and API of its external interfaces. This allows keeping
any frictions during replacement to a minimum. The interfaces to be
kept ABI and API compatible cover all in-kernel interfaces as well as the
user space interfaces. No user space or kernel space user of the LRNG is
required to be changed at all.

3. The LRNG must be very lightweight in hot code paths. As described in
the design in chapter 2, the LRNG is hooked into the interrupt handler
and therefore should finish the code path in interrupt context very fast.

4. The LRNG must not use locking in hot code paths to limit the impact on
massively parallel systems.

5. The LRNGmust handle modern computing environments without a degra-
dation of entropy. The LRNG therefore must work in virtualized environ-
ments, with SSDs, on systems without HIDs or block devices and so forth.

6. The LRNG must provide a design that allows quantitative testing of the
entropy behavior.

7. The LRNGmust use testable and widely accepted cryptography for whiten-
ing.

8. The LRNG must allow the use of cipher implementations backed by archi-
tecture specific optimized assembler code or even hardware accelerators.
This provides the potential for lowering the CPU costs when generating
random numbers – less power is required for the operation and battery
time is conserved.

1.3 Document Structure
This paper covers the following topics in the subsequent chapters:

• The design of the LRNG is documented in chapter 2. The design discus-
sion references to the actual implementation whose source code is publicly
available.

• The testing of the LRNG is covered in chapter 3. The testing is performed
for various aspects of the LRNG, including a comparison with the legacy
/dev/random behavior, the entropy assessment of the raw noise as well as
a study of the correctness of the output of the LRNG.

• Different ideas on how to integrate the LRNG with the current Linux
kernel code tree are discussed in section 4.

• The various appendices cover miscellaneous topics supporting the general
description.

6The background for this value is discussed in section 2.5.
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2 LRNG Design
The LRNG can be characterized with figure 2.1 which provides a big picture of
the LRNG processing and components.
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Figure 2.1: LRNG Big Picture

The heart of the LRNG is an SP800-90A DRBG defined by [1]. This DRBG
uses the kernel crypto API for its operation. In case the kernel crypto API shall
not be compiled, the LRNG uses ChaCha20 for the DRNG part and SHA-1 for
the hash operation which both are implemented in C without any additional
dependency. Note, throughout this document, all statements regarding the
DRBG equally apply to the ChaCha20 DRNG unless otherwise noted.

Entropy derived from interrupts is injected into the DRBG. The interrupt
noise source is the only noise source completely modeled and implemented by the
LRNG. Other noise sources that are developed independently from the LRNG
can feed entropic (or even non-entropic) data into the DRBG. Such “LRNG-
external” noise sources include:

• If available, the LRNG uses random number generators present in CPUs,
such as the Intel RDRAND instruction as a noise source. Note, this
noise source is not auditable. Therefore, the LRNG assumes only a small
amount of entropy is present with this noise source as documented in
section 2.5.1.

• If available, the CPU Jitter random number generator is used as a noise
source. The entropy content of the noise source is discussed in sec-
tion 2.5.2.
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• The Linux kernel implements drivers for specific hardware RNGs. The
hardware RNG driver framework is able to inject data into the DRBG.

• User space can write data into /dev/random or /dev/urandom which are
injected into the primary and secondary DRBG and assumed to have no
entropy.

• User space can use the IOCTL of RNDADDENTROPY to write data into the
primary DRBG with is associated with an entropy value.

Other noise sources can be added with ease – the structure allows and even
supports the addition of new noise sources, be it slow or fast noise sources.

The DRBG allows two methods of obtaining random data:

• For users requiring random numbers from a seeded and frequently reseeded
secondary DRBG, such as the /dev/urandom, the getrandom system call
or the in-kernel get_random_bytes function, the secondary DRBG is ac-
cessed directly by invoking its generate function. This generate function
complies with the generate function discussed in SP800-90A.

• Users requiring random data that contains information theoretical entropy,
such as for seeding other DRNGs also use the primary DRBG’s generate
function via the /dev/random device file and the getrandom system call
when invoked with GRND_RANDOM. The difference to the /dev/urandom
handling is that:

1. each primary DRBG generate request is limited to the amount of
entropy the of the DRBG was seeded with, and

2. each DRBG generate request is preceded by a reseeding of the DRBG.

The processing of entropic data from the noise source before injecting them into
the primary DRBG is performed with the following mathematical operations:

1. LFSR: The data received from the interrupts7 are processed byte-wise
with an LFSR. That LFSR is identical to the LSFR used in the legacy
/dev/random implementation. Also, this LFSR is used in the OpenBSD
/dev/random equivalent.

2. Concatenation: The temporary seed buffer used to seed the primary
DRBG is a concatenation of parts of the entropy pool data, and the CPU
noise source output.

The following subsections cover the different components of the LRNG from the
bottom to the top.

2.1 LRNG Big Picture
Before going into the details of the LRNG processing, the concept underlying
the LRNG shown in figure 2.1 is provided here.

7Note, also the HID event numbers like pressed key numbers or mouse movement coordi-
nates are also mixed into the entropy pool using this LSFR. As that data is credited with zero
entropy, it is not further discussed.
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The entropy derived from the slow noise source is collected and accumulated
in the entropy pool.

At the time the primary DRBG is seeded, the entire entropy pool is hashed
with a hash defined at compile time8. The caller is returned the hash truncated
to the amount of entropy that is to be given to the caller. In case the hash
type generates an output smaller than the entropy amount that can and shall
be delivered to the caller, the following steps are used to extract the necessary
data:

1. Generate the hash and place it in the output buffer.

2. Mix the hash result back into the entropy pool.

3. Go to step 1 and re-perform the operation until sufficient data is generated.

The entire hash is mixed back into the entropy pool for backtracking resistance.
The hash output is concatenated with data from the fast noise sources controlled
by the LRNG: the CPU noise source if it is available.

The primary DRBG always tries to seed itself with 256 bits9 of data, except
during boot. If the noise sources cannot deliver that amount, the available
entropy is used and the primary DRBG keeps track on how much entropy it
was seeded with. During boot, the primary DRBG is seeded as follows:

1. At the time of initialization of the LRNG, the available entropy in the
entropy pool and potentially with the fast noise sources are injected into
the primary DRBG.

2. The DRBG is reseeded from the entropy pool and potentially the fast
noise sources if the entropy pool has collected at least 32 data bits from
the interrupt noise source, i.e. one word, the smallest data unit that can
be read from the entropy pool. The goal of this step is to ensure that
the primary and secondary DRBG receive some initial entropy as early as
possible.

3. The DRBG is reseeded from the entropy pool and potentially the fast
noise sources if the entropy pool has collected at least 128 bits of entropy.

4. The DRBG is reseeded from the entropy pool and potentially the fast noise
sources if the entropy pool has collected at least 256 bits10 of entropy.

At the time of the reseeding steps, all available entropy from all noise sources is
used. This may imply that one or more of the aforementioned steps are skipped.

8The examples in the code use a hash that is the same as used for the DRBG type which
limits the required cipher support to only once cipher. In case of the CTR DRBG, the CMAC-
AES is suggested. The key for the CMAC-AES is set during initialization time by reading a
key equal to the AES type used for the DRBG from the initial RNG. That key is not changed
afterwards. The idea is that the CMAC AES shall operate like a hash, i.e. compressing and
whitening the entropy pool. The behavior of an authenticating MAC is irrelevant for the
purpose here which implies that the key does not need to be changed at runtime.

9That value depends on the security strength of the chosen DRBG. If the DRBG is the
CTR DRBG with AES 128 with a security strength of 128 bits, this value is 128 bits. Note,
in the remainder of this document, a DRBG with a security strength of 256 bits is assumed
when the value of 256 bits is referred to.

10As mentioned, the fully seeded value is equal to the DRBG security strength. That means,
this value is set to 128 bits if the CTR DRBG with AES 128 is used.
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For example, at the time of step 1 and the presence of the CPU noise source,
more than 128 bits of entropy are obtained even if no interrupts are collected.
This means that the LRNG arrives immediately at step 3, skipping steps 1 and
2.

In all listed steps, the secondary DRBG is (re)seeded with a number of
random bytes from the primary DRBG that is equal to the amount of entropy
the primary DRBG was seeded with. This means that when the primary DRBG
is seeded with 128 or 256 bits of entropy, the secondary DRBG is seeded with
that amount of entropy as well11.

Before the primary DRBG is seeded with 256 bits of entropy in step 4,
requests of random data from /dev/random are not processed.

At runtime, the primary DRBG delivers only random bytes equal to the
entropy amount it was seeded with. E.g. if the primary DRBG was seeded with
128 bits of entropy, it will return only 128 bits of random data. Subsequent
requests for random data are only fulfilled after a reseeding operation of the
primary DRBG.

The secondary DRBG operates as deterministic random number generator
with the following properties:

• The maximum number of random bytes that can be generated with one
DRBG generate operation is limited to 4096 bytes.

• The secondary DRBG is reseeded

– If the last reseeding of the secondary DRBG is more than 600 seconds
ago12, or

– 217 DRBG generate operations are performed, whatever comes first,
or

– the secondary DRBG is forced to reseed before the next generation of
random numbers if data has been injected into the LRNG by either
writing data into /dev/random or /dev/urandom or by using the
IOCTL of RNDADDENTROPY.

The chosen values prevent high-volume requests from user space to cause
frequent reseeding operations which drag down the performance of the
DRBG13.

When the secondary DRBG requests a reseeding from the primary DRBG and
the primary DRBG pulls from the entropy pool, an emergency entropy level

11There is only one exception to that rule: during initialization before the seed level of 128
bits is reached, a random number with 256 bit is generated by the primary DRBG to seed the
secondary DRBG.

12Note, this value will not empty the entropy pool even on a completely quiet system.
Testing of the LRNG was performed on a KVM without fast noise sources and with a minimal
user space, where only the SSH daemon was running, During the testing, no operation was
performed by a user. Yet, the system collected more than 256 bits of entropy from the interrupt
noise source within that time frame, satisfying the secondary DRBG reseed requirement.

13Considering that the maximum request size is 4096 bytes defined by
LRNG_DRBG_MAX_REQSIZE (i.e. each request is segmented into 4096 byte chunks) and at
most 217 requests defined by LRNG_DRBG_RESEED_THRESH can be made before a forced reseed
takes place, at most 4096 · 217 = 536, 870, 912 bytes can be obtained from the DRBG without
a reseed operation.
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of 512 bits of entropy is left in the entropy pool. This emergency entropy is
provided to serve /dev/random even while /dev/urandom is stressed.

With the automatic reseeding after 600 seconds, the LRNG is triggered to
reseed itself before the first request after a suspend that put the hardware to
sleep for longer than 600 seconds.

2.1.1 NUMA Systems

To prevent bottlenecks in large systems, the secondary DRBG will be instan-
tiated once for each NUMA node. The instantiation of the secondary DRBGs
happen all at the same time when the LRNG is initialized.

The question now arises how are the different secondary DRBGs seeded
without re-using entropy or relying on random numbers from a yet insufficiently
seeded LRNG. The LRNG seeds the secondary DRBGs sequentially starting
with the one for NUMA node zero – the secondary DRBG for NUMA node zero
is seeded with the approach of 32/128/256 bits of entropy stepping discussed
above. Once the secondary DRBG for NUMA node 0 is seeded with 256 bits
of entropy, the LRNG will seed the secondary DRBG of node one when having
again 256 bits of entropy available. This is followed by seeding the secondary
DRBG of node two after having again collected 256 bits of entropy, and so on.

When producing random numbers, the LRNG tries to obtain the random
numbers from the NUMA node-local secondary DRBG. If that secondary DRBG
is not yet seeded, it falls back to using the secondary DRBG for node zero.

Note, to prevent draining the entropy pool on quiet systems, the time-based
reseed trigger, which is 600 seconds per default, will be increased by 100 seconds
for each activated NUMA node beyond node zero. Still, the administrator is
able to change the default value at runtime.

2.1.2 Flexible Design

Albeit the preceding sections look like the DRBG and the management logic are
highly interrelated, the LRNG code allows an easy replacement of the DRBG
with another deterministic random number generator. This flexible design al-
lowed the implementation of the ChaCha20 DRNG as fallback if the kernel
crypto API is not available.

To implement another DRNG, all functions marked as “Crypto Implemen-
tations” at the beginning of lrng_base.c must be implemented. These functions
cover the allocation/deallocation of the DRNG and the entropy pool read hash
as well as their usage.

2.1.3 Covered Design Concerns of Legacy /dev/random14

The seeding approach of the LRNG covers one theoretical problem the legacy
/dev/random implementation faces: during initialization time, noise from the
noise sources is injected directly into the nonblocking_pool. Depending on
the assumed entropy in the data, zero to 11 bits of entropy may be stirred into
the nonblocking_pool per injection. At the same time the nonblocking_pool
is seeded, callers may read random data from it. For an insufficiently seeded

14This issue has been addressed to some extent by sending four 64 byte segments from the
fast_pools to the ChaCha20 DRNG at boot time with the kernel version 4.8.
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random number generator, this leads to a loss in entropy that is visualized with
the following worst case analogy: when an RNG receives one bit of entropy
which is followed by a generation of one or more random numbers, the caller
requires an attack strength of one bit to break the state of the RNG. When one
new bit of entropy is received after the attacker’s gathering of random data,
the new state of the RNG will again only have one bit of entropy and not two
bits (the addition of the first and second seed). Hence, in a pathological case,
the nonblocking_pool may receive 128 bits of entropy in 128 separate seeding
steps where an attacker can request random data from the nonblocking_pool
between each seeding operation. The attack strength required to break the
RNG in this case is 21 · 128 and not 2128 – i.e. the attack strength is reduced
to a manageable level. In case the attack is applied, the nonblocking_pool
will not have 128 bits of entropy, but zero bits! The LRNG does not face
this problem during initialization, because the entropy in the seed is injected
with one atomic operation into the primary and secondary DRBG. The issue
alleviated to some extent as during initialization four chunks of 64 bits each
derived from the interrupt noise source are injected into the ChaCha20 DRNG
starting with Linux kernel 4.8.

With the legacy /dev/random implementation in case /dev/urandom or
get_random_bytes is heavily read, a user space entropy provider waiting with
select(2) or poll(2) on /dev/random will not be woken up to provide more
entropy. This scenario is fixed with the LRNG where the user space entropy
provider is woken up.

2.2 LRNG Data Structures
The LRNG uses three main data structures:

• The interrupt noise source is processed with an entropy pool. That entropy
pool has various status indicators supporting the interrupt processing to
obtain entropy. To ensure that no locking is needed when accessing this
entropy pool in hot code paths, all relevant data units are atomic_t vari-
ables. This includes the entropy pool itself which is an array of atomic_t
variables that are all processed with the available atomic operations. By
using atomic operations, locking is irrelevant, especially in the hot code
paths.

• The deterministic random number generator data structure for the pri-
mary DRBG holds the reference to the kernel crypto API data structure
DRBG and associated meta data needed for its operation.

• The secondary DRBG is managed with a separate data structure.

2.3 Interrupt Processing
The LRNG hooks a callback into the bottom half interrupt handler at the same
location where the legacy /dev/random places its callback hook.

The LRNG interrupt processing callback is a void function that also does
not receive any input from the interrupt handler. That interrupt processing
callback is the hot code path in the LRNG and special care is taken that it is as
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short as possible and that it operates without locking. The following processing
happens when an interrupt is received and the LRNG is triggered:

1. A high-resolution time stamp is obtained using the service random_get_entropy
kernel function. Although that function returns a 64-bit integer, only the
bottom 32 bits, i.e. the fast moving bits, are used for further processing.
Entropy is contained in the variations of the time of events and its time
delta variations. Figure 2.1 depicts the 32-bit variable holding the time
stamp.

2. A health test is now performed with the “stuck” test. That health test
calculates the first, second and third derivative of the time stamp of the
interrupt event compared to the previous interrupt events. If one of those
is zero, the recorded bit from step 3 is considered stuck. If a bit is found
to be stuck, the processing of the IRQ event terminates, i.e. the entropy
pool will not be touched. Entropy is found in the variations of the time
deltas of interrupt event occurrences. Thus, the stuck test ensures that:

(a) variations exist in the time deltas,
(b) variations of time deltas do not have a simple repeating pattern, and
(c) variations do not have a linearly changing patterns (e.g. 1 - 2 - 4 - 7

- 11 - 16).

3. The time stamp value is a 32-bit integer is now processed with an LFSR
to mix the data into the entropy pool. The LFSR operation performs the
following steps:

(a) The processing of the input data is performed either byte-wise or
word-wise. The entropy pool is processed word-wise with a word size
of 32 bits.

(b) In case of a byte-wise processing of the input data, every byte is
padded with zeroes to fill a 32 bit integer,

(c) The 32 bit integer is rolled left by a value driven by variable that is
increased by 7 with a wrap-around handling at 32 before processing
one byte. The idea is that the input data is evenly mixed into the
entropy pool. The used value of 7 ensures that the individual bits
of the input data have an equal chance to move the bits within the
entropy pool.

(d) The resulting 32 bit integer is processed with the LFSR polynomial
and inserted into the current word of the entropy pool. The LFSR
polynomial is primitive, derived from a table of LFSR polynomials
of various sizes. Note, however, that the taps in that document have
to be reduced by one for the LRNG operation as the taps are used
as an index into an array of words which starts at zero.

(e) The pointer to the current word is increased by a prime number to
point to the next word. The idea to use a prime number for the
increment is to eliminate any potential dependencies of the taps in
the LFSR. Note, for some LFSR polynomials, the taps are very close
together.
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4. If equal or more than /proc/sys/kernel/random/read_wakeup_threshold
healthy bits are received, the wait queue where readers wait for entropy is
woken up. Note, to limit the amount of wakeup calls if the entropy pool
is full, a wakeup call is only performed after receiving 32 interrupt events.
The reason is that the entropy pool can be read in 32-bit increments only
anyway.

5. If the primary DRBG is fully seeded, the processing stops. This implies
that only during boot time the next step is triggered. At runtime, the
interrupt noise source will not trigger a reseeding of the primary DRBG.

6. If less than LRNG_IRQ_ENTROPY_BITS healthy bits are received, the pro-
cessing of the LRNG interrupt callback terminates. This value denomi-
nates the number of healthy bits that must be collected to assume this bit
string has 256 bits of entropy. That value is set to a default value of 256
(interrupts). Section 2.3.1 explains this default value. Note, during boot
time, this value is set to 128 bits of entropy.

7. Otherwise, the LRNG triggers a kernel work queue to perform a seeding
operation discussed in section 2.5.

The entropy collection mechanism is available right from the beginning of the
kernel. Thus even the very first interrupts processed by the kernel are recorded
by the aforementioned logic.

In case the underlying system does not support a high-resolution time stamp,
step 2 in the aforementioned list is changed to fold the following 32 bit values
each into one bit and XOR all of those bits to obtain one final bit:

• IRQ number,

• High 32 bits of the instruction pointer,

• Low 32 bits of the instruction pointer,

• A 32 bit value obtained from a register value – the LRNG iterates through
all registers present on the system.

2.3.1 Entropy Amount of Interrupts

The question now arises, how much entropy is generated with the interrupt noise
source. The current implementation implicitly assumes one bit of entropy per
time stamp obtained for one interrupt15.

When the high-resolution time stamp is not present, the entropy contents
assumed with each received interrupt is divided by the factor defined with
LRNG_IRQ_OVERSAMPLING_FACTOR. With different words, the LRNG needs to
collect LRNG_IRQ_OVERSAMPLING_FACTOR more interrupts to reach the same level
of entropy than when having the high-resolution time stamp. That value is set
to 10 as a default.

15That value can be changed if the default is considered inappropriate. At compile time, the
value of LRNG_IRQ_ENTROPY_BYTES can be altered. This value defines the number of interrupts
that must be received to obtain an entropy content equal to the security strength of the used
DRBG.

14



2.4 HID Event Processing
The LRNG picks up the HID event numbers of each HID event such as a key
press or a mouse movement by implementing the add_input_randomness func-
tion. The following processing is performed when receiving an event:

1. The LRNG checks if the received event value is identical to the previous
one. If so, the event is discarded to prevent auto-repeats and the like to
be processed.

2. The event values are processed with the LFSR used for interrupts as well.
The LFSR therefore injects the HID event information into the entropy
pool.

The LRNG does not credit any entropy for the HID event values.

2.5 Primary DRBG Seeding Operation
The seeding operation obtains random data from the entropy pool. In addition
it pulls data from the fast entropy sources of the CPU noise source if available.
As these noise sources provide data on demand, care must be taken that they
do not monopolize the interrupt noise source. This is ensured with the design
choice to pull data from these fast noise sources at the time the interrupt noise
source has sufficient entropy.

The (re)seeding logic tries to obtain 256 bits of entropy from the noise
sources. However, if less entropy can only be delivered, the primary DRBG
is able to handle this situation.

The entropy pool has a size of 128 32-bit words. The value of 128 words is
chosen arbitrarily and can be changed to any other size provided another LFSR
polynomial is provided.

For efficiency reasons, the seeding operation uses a seed buffer depicted in
figure 2.1 that is one block of 256 bits and a second block equal to the digest
size of the hash used to read the entropy pool. The first block is filled with data
from the hashed data from the entropy pool. That buffer receives as much data
from the hash operation as entropy can be pulled from the entropy pool. In the
worst case when no new interrupts are received a zero buffer will be injected
into the DRBG.

The second 256-bit blocks are dedicated the fast noise sources and is filled
with data from those noise sources – i.e. RDRAND. If the fast noise sources is
deactivated, its 256 bit block is zero and zero bits of entropy is assumed for this
block. The fast noise source is only pulled if either entropy was obtained from
the slow noise sources or the data is intended for the secondary DRBG. The
reason is that the fast noise sources can dominate the slow noise sources when
much entropic data is required. This scenario is prevented for /dev/random.

When reading the interrupt entropy pool, the entire entropy pool is hashed.
The result of the hash is injected back into the entropy pool using the LFSR
described in section 2.3. During the hashing, the LRNG processes the amount
of entropy assumed to be present in the entropy pool. If the entropy is smaller
than the hash size, the digest returned to the caller for the primary DRBG is
truncated to a size equal to the amount of entropy that is present in the entropy
pool. This operation is followed by reducing the assumed entropy in the pool
by the amount returned by the hash operation.
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Finally, also a 32 bit time stamp indicating the time of the request is mixed
into the primary DRBG. That time stamp, however, is not assumed to have
entropy and is only there to further stir the state of the DRBG.

During boot time, the number of required interrupts for seeding the DRBG
is first set to an emergency threshold of one word, i.e. 32 bits. This is followed
by setting the threshold value to deliver at least 128 bits of entropy. At that
entropy threshold, the DRBG is considered “minimally” seeded – the value of
128 bits is derived from the minimum entropy requirement specified in proposed
updates to SP800-131A ([5]) and complies with the proposed updates to the
minimum entropy requirement from BSI TR-02102 ([6]) as well. When reaching
the minimal seed level, the threshold for the number of required interrupts for
seeding the DRBG is set to LRNG_IRQ_ENTROPY_BITS to allow the DRBG to be
seeded with full security strength.

2.5.1 Entropy of CPU Noise Source

The noise source of the CPU is assumed to have one 32th of the generated
data size – 8 bits of entropy. The reason for that conservative estimate is that
the design and implementation of those noise sources is not commonly known
and reviewable. The entropy value can be altered by writing an integer into
/sys/module/lrng/parameters/archrandom or by setting the kernel command
line option of lrng.archrandom.

2.5.2 Entropy of CPU Jitter RNG Noise Source

The CPU Jitter RNG noise source is assumed provide 16th bit of entropy per
generated data bit. Albeit studies have shown that significant more entropy is
provided by this noise source, a conservative estimate is applied.

The entropy value can be altered by writing an integer into /sys/mod-
ule/lrng/parameters/jitterrng or by setting the kernel command line option of
lrng.jitterrng.

2.6 Secondary DRBG Seeding Operation
The secondary DRBG is seeded from the primary DRBG. Before obtaining
random data from the primary DRBG, the LRNG tries to reseed the primary
DRBG with 256 bits of entropy. That is followed by a generation of random
numbers equal to the entropy content in the primary DRBG.

The secondary DRBG seeding operation may trigger a reseeding operation of
the primary DRBG. In this case, the reseeding operation of the primary DRBG
will always leave an emergency level of entropy in the entropy pool to be used
exclusively for the primary DRBG. In addition, the seeding operation of the
primary DRBG when triggered by the secondary DRBG will either obtain full
256 bits of entropy or nothing. This approach shall cover the concerns outlined
in section 2.1.3.

In the worst case, the primary DRBG is unable to return any random num-
bers as it is not seeded with any entropy. Yet, the secondary DRBG will continue
to operate considering that it was seeded with 256 bits of entropy during boot
time.

16



2.7 LRNG-external Noise Sources
The LRNG also supports obtaining entropy from the following noise sources
that are external to the LRNG. The buffers with random data provided by
these noise sources are sent directly to the primary DRBG by invoking the
DRBG’s update function.

2.7.1 Kernel Hardware Random Number Generator Drivers

Drivers hooking into the kernel HW-random framework can inject entropy di-
rectly into the DRBG. Those drivers provide a buffer to the primary DRBG
and an entropy estimate in bits. The primary DRBG uses the given size of
entropy at face value. The interface function of add_hwgenerator_randomness
is offered by the LRNG.

The amount of entropy injected into the primary DRBG is recorded to allow
subsequent calls to read from the primary DRBG without additional reseeding.

Note: it is meaningless to inject more than the DRBG’s security strength of
data into the primary DRBG at once.

2.7.2 Injecting Data From User Space

User space can take the following actions to inject data into the DRBG:

• When writing data into /dev/random or /dev/urandom, the data is used
to re-seed the primary DRBG. The LRNG assumes it has zero bits of
entropy.

• When using the privileged IOCTL of RNDADDENTROPY with /dev/random,
the caller can inject entropic data into the primary DRBG and define the
amount of entropy associated with that data.

Just like with the hardware RNGs, it is meaningless to inject more than the
security strength of the DRBG at once.

User space may obtain the DRBG security strength size by reading /proc/sys/k-
ernel/random/drbg_security_strength which returns the size in bytes.

2.8 DRBG
The default DRBG used by the LRNG is the CTR DRBG with AES-256 defined
by SP800-90A. The reason for the choice of a CTR DRBG is its speed. The
source code allows the use of other types of DRBG by simply defining a DRBG
reference using the kernel crypto API DRBG string – see the top part of the
LRNG source code for examples covering all types of DRBG.

Both the primary and secondary DRBG are always instantiated with the
same DRBG type.

The implementation of the DRBG is taken from the Linux kernel crypto
API. The use of the kernel crypto API to provide the cipher primitives allows
using assembler or even hardware-accelerator backed cipher primitives. Such
support should relieve the CPU from processing the cryptographic operation as
much as possible.

The input with the seed and re-seed of the DRBG has been explained above
and does not need to be re-iterated here. Mathematically speaking, the seed and
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re-seed data obtained from the noise sources and the LRNG external sources
are mixed into the DRBG using the DRBG “update” function as defined by
SP800-90A.

The DRBG generates output with the DRBG “generate” function that is
specified in SP800-90A. The DRBG used to generate two types of output that
are discussed in the following subsections.

2.8.1 /dev/urandom and get_random_bytes

Users that want to obtain data via the /dev/urandom user space interface or
the get_random_bytes in-kernel API are delivered data that is obtained from
the secondary DRBG “generate” function. I.e. the secondary DRBG generates
the requested random numbers on demand.

Data requests on either interface is segmented into blocks of maximum 4096
bytes. For each block, the DRBG “generate” function is invoked individually.
According to SP800-90A, the maximum numbers of bytes per DRBG “generate”
request is 219 bits or 216bytes which is significantly more than enforced by the
LRNG.

In addition to the slicing of the requests into blocks, the LRNG maintains
a counter for the number of DRBG “generate” requests since the last reseed.
According to SP800-90A, the number of allowed requests before a forceful reseed
is 248 – a number that is very high. The LRNG uses a much more conserva-
tive threshold of 217requests as a maximum. When that threshold is reached,
the secondary DRBG will be reseeded by using the operation documented in
section 2.5 before the next DRBG “generate” operation commences.

The handling of the reseed threshold as well as the capping of the amount of
random numbers generated with one DRBG “generate” operation ensures that
the DRBG is operated compliant to all constraints in SP800-90A.

The reseed operation for /dev/urandom will drain the entropy pool down to
a level where LRNG_EMERG_POOLSIZE interrupt events are still left in the pool.
The goal is that even during heavy use of /dev/urandom, some emergency
entropy is left for /dev/random. Note, before the DRBG is fully seeded, the
LRNG_EMERG_POOLSIZE threshold is not enforced.

2.8.2 /dev/random

The random numbers to be generated for /dev/random are defined to have a
special property: each bit of the random number produced for /dev/random is
generated from one bit of entropy using the primary DRBG.

Naturally the amount of entropy the DRBG can hold is defined by the
DRBG’s security strength. For example, an HMAC SHA-256 DRBG can only
hold 256 bits of entropy. Seeding that DRBG with more entropy without pulling
random numbers from it will not increase the entropy level in that DRBG.

If the DRBG reseed request cannot be fulfilled due to the lack of available
entropy, the caller is blocked until sufficient entropy has been collected or the
DRBG has been reseeded with an entropy equal or larger to the security strength
by external noise sources.
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2.9 ChaCha20 DRNG
If the kernel crypto API is not compiled, the LRNG uses the standalone C
implementations for ChaCha20 to provide a DRNG. In addition, the standalone
SHA-1 C implementation is used to read the entropy pool.

The ChaCha20 DRNG is implemented with the components discussed in
the following section. All of those components rest on a state defined by [10],
section 2.3.

2.9.1 State Update Function

The state update function’s purpose is to update the state of the ChaCha20
DRNG. That is achieved by

1. generating one output block of ChaCha20,

2. partition the generated ChaCha20 block into two key-sized chunks,

3. and XOR both chunks with the key part of the ChaCha20 state.

In addition, the nonce part of the state is incremented by one to ensure the
uniqueness requirement of [10] chapter 4.

2.9.2 Seeding Operation

The seeding operation processes a seed of arbitrary lengths. The seed is seg-
mented into ChaCha20 key size chunks which are sequentially processed by the
following steps:

1. The key-size seed chunk is XORed into the ChaCha20 key location of the
state.

2. This operation is followed by invoking the state update function.

3. Repeat the previous steps for all unprocessed key-sized seed chunks.

If the last seed chunk is smaller than the ChaCha20 key size, only the available
bytes of the seed are XORed into the key location. This is logically equivalent
to padding the right side of the seed with zeroes until that block is equal in size
to the ChaCha20 key.

The invocation of the state update function is intended to eliminate any
potentially existing dependencies between the seed chunks.

2.9.3 Generate Operation

The random numbers from the ChaCha20 DRNG are the data stream produced
by ChaCha20, i.e. without the final XOR of the data stream with plaintext.
Thus, the DRNG generate function simply invokes the ChaCha20 to produce
the data stream as often as needed to produce the requested number of random
bytes.

After the conclusion of the generate operation, the state update function is
invoked to ensure enhanced backtracking resistance of the ChaCha20 state that
was used to generate the random numbers.
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2.10 Initial Random Number Generator
The DRBG is taken from the Linux kernel crypto API. That kernel subsystem
is initialized after the majority of the kernel is already initialized. The DRBG
for the LRNG is initialized during late_initcall. The late_initcall initial-
ization is completed before user space starts, including the initramfs if one is
used. This means that when user space becomes available, the LRNG is online
and seeded with at least one seed operation.

However, in-kernel users exist that require random numbers way earlier than
late_initcall. For those users, the LRNG provides the initial random num-
ber generator. That initial RNG is invoked transparently to the caller – i.e. the
get_random_bytes pulls data from the initial RNG until the DRBG is initial-
ized.

During that early boot stage, very little entropy is present in the system.
Yet, the initial RNG is uses a cryptographically strong state transition function
and output function to provide statistically good random numbers.

To satisfy callers in-kernel callers during early boot time, the initial RNG is
a SHA-1 based RNG with the following properties:

• A global byte array holding the state of SHA-1 with the size of 64 bytes
is maintained.

• When generating a new random number, a SHA-1 hash of the global
array is calculated after it has been updated as follows: these 64 bytes are
segmented into 32-bit words where the words are modified with the listed
operations:

– Perform a SHA-1 update with
∗ If a CPU random number generator is present, all words are
XORed with the output of that CPU random number generator.

∗ All words are XORed with the 32 low bits of a high-resolution
time stamp obtained individually for each word.

– Perform another SHA-1 update with the entire entropy pool content.

• The SHA-1 operation is performed using the global SHA-1 state. The
resulting 20 byte hash is the random number returned to the caller.

• To ensure backtracking resistance, these 20 bytes of the SHA-1 hash are
XORed into the first five words of the SHA-1 state.

When the DRBG is initialized, the SHA-1 state is injected into the DRBG as
seed with an entropy content of zero. As the interrupt entropy pool is used in a
separate seed operation immediately after the SHA-1 state is injected into the
DRBG and the initial RNG pulled from the interrupt entropy pool, that SHA-1
state must be defined to hold zero bits of entropy.

After the SHA-1 state is injected into the DRBG and the DRBG is declared
online, the state is zeroized.
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2.11 Comparison With RNG Design Recommendations
2.11.1 SP800-90C

The specification of SP800-90C as provided in [2] and recently updated with [4]
defines construction methods to design non-deterministic as well as deterministic
RNGs. The specification defines different types of RNGs where the following
mapping to the LRNG applies:

• The output of the /dev/random device complies with the Non-deterministic
Random Bit Generator (NRBG) definition specified in section 5.6 of [4].
The reason is the use of an approved DRBG that is fed by an entropy
source. This DRBG is capable of providing output with “full entropy”
when the caller applies the process described in section 9.4.2 [4] 16. Al-
though the entropy source is not always “live” as referenced in [4], the
generation of output data stops until fresh entropy is received. If the
entropy source(s) enter an error state – for example, the stuck test for
the interrupt noise source always indicates stuck bits – and the entropy
sources are incapable of generating entropy, the output of /dev/random
stops which is considered to be the error state as defined in section 5.3 of
[4].
The primary DRBG operates as a DRBG with prediction resistance as
defined in section 8.8 of [1] with one important difference: instead of
requiring that the primary DRBG is always seeded with entropy equal to
the full security strength of the DRBG, the primary DRBG keeps track on
how much entropy was provided with a seed and delivers only that amount
of random data equal to the amount of entropy it was seeded with before
the given generate operation.

• The output of the /dev/urandom device and the get_random_bytes kernel
function is a DRBG without prediction resistance as allowed in chapter 4
of [4]. The reseed threshold, however, is significantly lower than specified
with SP800-90A in [1]. In addition to a threshold regarding the amount of
generated random data, the secondary DRBG also employs a time-based
reseeding threshold to ensure that the DRBG is reseeded in a reasonable
amount of time.

The requirements of the security of an RNG defined in section 4.1 of [4] are
considered to be covered as follows:

1. The entropy source of the interrupt noise source complies with SP800-90B
[3] as assessed above. For the CPU noise sources, no statement can be
made as no access to the design and implementations are given.

2. The DRBG is designed according to SP800-90A and has received even
FIPS 140-2 certification.

3. The primary DRBG is instantiated using input from the noise sources
whereas the secondary DRBG is instantiated from the primary DRBG.

16The primary DRBG generates at most as many bits of random numbers as the DRBG
was seeded with and allows the caller to obtain “full entropy” random numbers as defined in
section 9.4.2 [4]. As discussed below, the “full entropy” definition of section 5.2 and hence the
process specified in 9.4.2 from [4] are not applied for reseeding the secondary DRBG.
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4. The LRNG is implemented entirely within the Linux kernel which implies
that its entire state is protected from access by untrusted entities.

5. Data fetched from the noise sources always contains data with fresh, yet
unused entropy. It may be possible that the entropy gathered from the
noise sources cannot deliver as many entropic bits as requested. The
primary DRBG tracks the amount of entropy gathered from the noise
source to ensure that it only returns at most as much random data as the
DRBG received in form of entropy.

According to section 5.2 [4], full entropy is defined as a random number gener-
ated by a DRBG that contains entropy of half of the random number size. The
primary DRBG acting as NRBG is capable of complying with this definition
at the request of the caller – i.e. the caller assumes that the obtained data
from the primary DRBG has an entropy content that is half the size of the
generated random numbers. The process of seeding another random number
generator from the primary DRBG with the definition of “full entropy” applied
is described in section 9.4.2 [4].

However, this full entropy definition is not applied for seeding the secondary
DRBG. This means that process is described in section 9.4.2 of [4] is not used
to seed the secondary DRBG. Various cryptographers, namely mathematicians
from the German BSI, consider such compression factor as irrelevant. SP800-
90C is yet in draft state and many other random number generators are im-
plemented such that the amount of entropy injected into the DRBG allows an
equal amount of random data to be extracted and yet consider that this data
has full entropy content. If the SP800-90C full entropy definition shall be en-
forced, the reseeding operation of the secondary DRBG in lrng_sdrbg_seed
requires calling of the primary DRBG gathering function twice and assume that
the resulting bit string only contains an entropy content that is half of the data
size of the returned random numbers.

As required in chapter 4 [3] and chapter 5 [4], the interrupt noise source
implemented by the LRNG is subject to a health test. This health test is
implemented with the stuck test.

Chapter 7 [4] specifies pseudo-code interfaces for the DRBG and NRBG
where the LRNG only implements the “Generate_function”. The “Instanti-
ate_function” is not implemented as the LRNG implements and automatic in-
stantiation. For the DRBG, a “Reseed_function” is implemented by allowing
user space to write data to /dev/random or using the IOCTL to inject data
into the DRBG as well as add_hwgenerator_randomness. The LRNG also im-
plements the “GetEntropy” logic as defined in section 7.4 [4] where each noise
source is accessed to obtain a bit stream and a value of the assessed entropy.

2.11.2 AIS 20 / 31

The German BSI defines construction methods of RNGs with AIS 20/31 [7]. In
particular, this document defines different classes of RNGs in chapter 4.

The LRNG can be compared to the types of RNGs defined in AIS 20/31 as
follows:

• The primary DRBG and is directly callable interface of /dev/random is
an NTG.1 which uses one or more entropy sources. Each entropy source
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has an entropy estimation associated with it. The generation of the data
for /dev/random considers this entropy estimate by reseeding the DRBG
with a buffer holding an entropy amount equal or larger to the DRBG
security strength. The state transition function φ and output function ψ
are provided with the chosen DRBG. By using the primary DRBG to serve
/dev/random, the LRNG ensures that each random number generated by
the primary DRBG must be backed by an equal amount of entropy that
seeded the DRBG. Hence, the data derived from /dev/random is backed
by information theoretical entropy.

• The /dev/urandom and the in-kernel get_random_bytes function is a
DRG.4. It uses a DRBG for the state transition function φ and output
function ψ to ensure enhanced backward secrecy which is the prerequisite
for a DRG.3. Due to the frequent reseed operation with fresh entropy and
the use of an SP800-90A DRBG with its update function invoked during
the generate operation, it also complies with the additional requirement
of a DRG.4.

As required by AIS 20/31 [7] chapter 4, a health test of the noise source is
implemented with the stuck test.

2.11.3 FIPS 140-2

The FIPS 140-2 standard refers to SP800-90A and SP800-90B regarding ap-
proved DRBGs and noise sources. However, one aspect must be enforced by the
noise source: the continuous random number generator test (CRNGT). This
test is detailed in FIPS 140-2 IG 9.8.

The continuous random number generator test requires that a comparison
test must be implemented to identify a stuck test. It requires that the previous
data point is not identical to the current data point. When using integers, this
requirement now means that both integers are not identical. That requirement
is identical to calculating a difference of both integers and ensuring that it is
not zero. If it is zero, the obtained data point is to be considered stuck.

Such test is implicitly implemented with the stuck test:

• The LRNG interrupt noise source receives a notification that an interrupt
is received by the Linux kernel. The LRNG obtains a time stamp of that
event.

• The LRNG implements the stuck test which calculates the first, second
and third derivative of the time of the event. For the raw noise data of time
stamps the CRNGT is enforced by calculating the the first derivative of the
time, i.e. the delta time stamps. When that result is zero, it declares the
obtained data point as stuck and does not treat it as having any entropy.

As discussed in section 2.3, a stuck time stamp is mixed into the pool but
does not contribute to entropy. In the worst case of always collecting stuck
measurements, no entropy is generated and delivered to the DRBG.

When the kernel is booted in FIPS mode – i.e. booted with fips=1 – the
LRNG causes the kernel to panic after reaching 4 back-to-back stuck tests.
The reason for choosing the value of 3 allowed back-to-back stuck values and
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panicing with the 4th stuck value is found in the minimum entropy value de-
picted in 3.2 which identifies the minimum entropy of the time delta, i.e. the
value that defines the entropy for the interrupt noise source. As this value is
about 11 bits, using this value with the formula in IG 9.8 results in allowing a
threshold of about 3.

2.12 LRNG External Interfaces
The following LRNG interfaces are provided:

lrng_irq_process This function is to be hooked into the interrupt handler to
trigger the LRNG interrupt noise source operation.

get_random_bytes In-kernel equivalent to /dev/urandom.

get_random_bytes_arch In-kernel service function to safely call CPU noise
sources directly and ensure that the LRNG is used as a fallback if the
CPU noise source is not available.

add_hwgenerator_randomness Function for the HW RNG framework to fill
the LRNG with entropy.

add_random_ready_callback Register a callback function that is invoked when
the DRBG is fully seeded.

del_random_ready_callback Delete the registered callback.

/dev/random User space interface to provide random data with full entropy
– read function may block if insufficient entropy is available.

/dev/urandom User space interface to provide random data from a constantly
reseeded DRBG – the read function will generate random data on demand.
Note, the buffer size of the read requests should be as large as possible,
up to 4096 bits to provide a fast operation. See table 6 for an indication
of how important that factor is.

/proc/sys/kernel/random/poolsize Size of the entropy pool in bits.

/proc/sys/kernel/random/entropy_avail Number of interrupt events mixed
into the entropy pool.

/proc/sys/kernel/random/read_wakeup_threshold Threshold that when
reached by the entropy_avail value triggers a wakeup of readers. In addi-
tion, a wakeup of the readers is triggered when the DRBG is (re)seeded
with security strength bits of entropy. The minimum allowed to be set is
equal to the minimum amount of entropic bits that can be obtained with
one read of the entropy pool, i.e. 32 bits.

/proc/sys/kernel/random/write_wakeup_threshold When entropy_avail
falls below that threshold, suppliers of entropy are woken up.

/proc/sys/kernel/random/boot_id Unique UUID generated during boot.

/proc/sys/kernel/random/uuid Unique UUID that is re-generated during
each request.
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/proc/sys/kernel/random/urandom_min_reseed_secs Number of sec-
onds after which the secondary DRBG will be reseeded. The default is
600 seconds. Note, this value can be set to any positive integer, including
zero. When setting this value to zero, the secondary DRBG tries to reseed
from the primary DRBG before every generate request. I.e. the secondary
DRBG in this case acts like a DRBG with prediction resistance enabled
as defined in [1].

/proc/sys/kernel/random/drbg_fully_seeded Boolean indicating whether
the DRBG is fully seeded with entropy equal to the DRBG security
strength.

/proc/sys/kernel/random/drbg_minimally_seeded Boolean indicating
whether the DRBG is seeded the minimum entropy of 128 bits.

/proc/sys/kernel/random/lrng_type String referencing the DRBG type
in use as well as the hash for reading out the entropy buffer.

/proc/sys/kernel/random/drbg_security_strength Security strength of
the used DRBG in bytes. This value is important for suppliers of entropy:
providing more entropy will not make the /dev/random operation faster
as the primary DRBG will only be able to store that amount of entropy.
In addition, the secondary DRBG requires DRBG security strength ran-
dom numbers from the primary DRBG during reseeding. Hence, it is
suggested to provide random data with entropy that matches exactly the
given DRBG security strength to serve both /dev/random and /dev/u-
random.

IOCTLs are implemented as documented in random(4).

3 LRNG Testing
After the discussion of the design of the LRNG, the LRNG must now show that
it is up to the task. Testing is performed for the following areas:

• Tests to compare the LRNG with the legacy /dev/random are conducted
to analyze whether the LRNG brings benefits over the legacy implemen-
tation.

• Statistical tests of the LRNG data are conducted. These statistical tests
focus on the raw entropic data from the interrupts and reach to the assess-
ment of output of the DRBG to demonstrate that the DRBG is correctly
used.

Before presenting the test results, the first subsection discusses the used statis-
tical tools and the test approach.

3.1 Statistical Tools
The statistical analysis of the various data sets is performed with different tools
that are explained in the following.

The first tool used is ent that is accessible at the ent homepage. That tool
calculates the following statistical values:
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• Shannon Entropy value: given the fact that we subsequently calculate a
minimum entropy value, this value is considered to be secondary to the
assessment. Note, its result is perfect in almost all cases and thus not
really helpful.

• Compression rate: this value is also considered secondary as often a perfect
compression rate of zero was displayed by ent, but bzip2 could compress
the data set. Hence, that value is not considered during the assessment
either and is replaced with an invocation of bzip2 if deemed relevant.

• Chi-Square value: this value and its rating regarding the confidence in-
terval is the most important result of the ent tool. A passing value is a
necessary for determining that a data set is considered random. However,
a good value does not automatically imply that the data set shows no
other weaknesses. The Chi-Square value therefore is used as a “smoke
test” in all circumstances to identify whether a data set is non-random to
begin with.

• The arithmetic mean value is a good indicator whether any skews are
present. If that value is not right in the center of the distribution, the
Chi-Square test will fail too. Hence, this value may inform about why a
Chi-Square test fails.

• The Monte Carlo Test of PI seems to be less relevant. Its result correlates
with the result of Chi-Square and the arithmetic mean value.

• The serial correlation coefficient is another important value indicating the
correlation of the data set values. Similarly to the arithmetic mean value,
it provides hints why a Chi-Square test fails.

ent allows the calculation of the mentioned values to be performed with a bit-
wise and bytewise treatment of the input data set. All data sets used here
are considered be independent and identically distributed (IID) which implies
that both the bitwise and the bytewise calculations should show equal results.
Hence, the following testing analyzes the data sets always bitwise and bytewise.
When ent is used on data sets that are the output of a cryptographic whitening
function such as the DRBG or the initial RNG, its result is used to deter-
mine that the implementation does not introduce any coding errors similarly
to CVE:2013-4345, because a statistical test of such data must by definition be
perfect.

In addition to ent, the statistical tests defined by SP800-90B ([3]) are used
to calculate various minimum entropy values. [3] provides full definitions of the
tests which are not specified here again apart from the following list of conducted
statistical tests resulting in a minimum entropy calculation:

• Bins test

• Collision test

• Compression test

• Collection test

• Markov test
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The assessment below uses these tests to determine the minimum entropy of the
raw noise before it is processed with the DRBG. As the output of the DRBG
and the initial RNG is a cryptographically whitened data set, any calculation
of the minimum entropy value for these data sets must by definition be perfect
and is therefore skipped.

Furthermore, the statistical tests defined by SP800-22rev1a ([11]) are applied
using the test tool provided at the NIST website. The document of [11] defines
all tests and provides a rationale about how to interpret the results. Hence, the
documentation below only notes whether these tests pass or fail. SP800-22rev1a
performs the following tests:

• Frequency test

• Block Frequency test

• Cumulative Sums test

• Runs test

• Longest Run test

• Rank test

• Fast Fourier Transformation test

• Non Overlapping Template test

• Overlapping Template test

• Universal test

• Approximate Entropy test

• Random Excursions test

• Random Excursions Variant test

• Serial test

• Linear Complexity test

The German BSI AIS 20/31 specified in [7] defines a set of statistical tests called
“test procedure A” consisting of the following tests:

• Monobit Test

• Poker Test

• Runs Test

• Long Runs Test

• Autocorrelation Test

This test procedure is defined in section 2.4.4.1 [7]. The tests are fully specified
in that document and are not re-iterated here. The test procedure A requires
at least 5 MB of data.
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3.2 Test Approach
The testing requires data that is maintained within the kernel and does not
have an architected interface to access or read that data. For accessing such
information and exporting it to user space for further assessment, SystemTap
is used. The following SystemTap scripts are used:

• The SystemTap script lrng_irq_raw_time.stp is hooked into the LRNG
interrupt handler function. This script reads out the time stamp value
generated for an interrupt and that is folded into one bit. This time
stamp is the raw entropy source for the LRNG.

• The script lrng_irq_raw_entropy.stp is hooked into the DRBG reseed
function and obtains a snapshot of the interrupt entropy pool. The script
is to be used such that only reseed triggers from the interrupt handler.
This ensures that the entropy pool is filled with data from 256 interrupts
and thus allows measuring the statistical properties of the data used to
seed the DRBG.

The output functions of the LRNG are binary compatible to the interfaces of
the legacy /dev/random. Therefore, to test the LRNG operation, the LRNG
API must be hooked into the kernel – which is implemented with a very simple
approach: The LRNG interface functions are added to the legacy /dev/random
code. The following code snippets shows the changes to the legacy /dev/random
code:

Listing 1: drivers/char/random.c
+ extern void lrng_get_random_bytes (u8 *outbuf , u32 outbuflen );

void get_random_bytes (void *buf , int nbytes )
{

+ return lrng_get_random_bytes (buf , nbytes );
...
+ extern ssize_t
+ lrng_full_read ( struct file *file , char __user *buf , size_t nbytes , loff_t *ppos );

static ssize_t
random_read ( struct file *file , char __user *buf , size_t nbytes , loff_t *ppos)
{

+ return lrng_full_read (file , buf , nbytes , ppos );
...
+ extern ssize_t
+ lrng_drbg_read ( struct file *file , char __user *buf , size_t nbytes , loff_t *ppos );

static ssize_t
urandom_read ( struct file *file , char __user *buf , size_t nbytes , loff_t *ppos)
{

@@ -1463 ,6 +1470 ,7 @@ urandom_read ( struct file *file , char __user *buf , size_t nbytes , loff_t *ppos)
printk_once ( KERN_NOTICE " random : %s urandom read "

"with %d bits of entropy available \n",
current ->comm , nonblocking_pool . entropy_total );

+ return lrng_drbg_read (file , buf , nbytes , ppos );
...
+ extern unsigned int lrng_full_poll ( struct file *file , poll_table * wait );

static unsigned int
random_poll ( struct file *file , poll_table * wait)
{

unsigned int mask;
+ return lrng_full_poll (file , wait );
...
+ extern ssize_t lrng_drbg_write ( struct file *file , const char __user *buffer ,
+ size_t count , loff_t *ppos );

static ssize_t random_write ( struct file *file , const char __user *buffer ,
size_t count , loff_t *ppos)

{
size_t ret;

+ return lrng_drbg_write (file , buffer , count , ppos );
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...
+ extern long lrng_ioctl ( struct file *f, unsigned int cmd , unsigned long arg );

static long random_ioctl ( struct file *f, unsigned int cmd , unsigned long arg)
{

int size , ent_count ;
int __user *p = (int __user *) arg;
int retval ;

+ return lrng_ioctl (f, cmd , arg );
...
+ extern int lrng_fasync (int fd , struct file *filp , int on );

static int random_fasync (int fd , struct file *filp , int on)
{

+ return lrng_fasync (fd , filp , on );
...
+ extern ssize_t lrng_getrandom (char __user * buf , size_t count , unsigned int flags );

SYSCALL_DEFINE3 (getrandom , char __user *, buf , size_t , count ,
unsigned int , flags )

{
+ return lrng_getrandom (buf , count , flags );
...
+ extern void lrng_add_hwgenerator_randomness ( const char *buffer , size_t count ,
+ size_t entropy );

void add_hwgenerator_randomness ( const char *buffer , size_t count ,
size_t entropy )

{
struct entropy_store * poolp = & input_pool ;

+ return lrng_add_hwgenerator_randomness (buffer , count , entropy );

Using the changes to the legacy /dev/random code, the LRNG is now di-
rectly used when accessing the interfaces of the legacy /dev/random. Yet, the
legacy /dev/random operation to record and maintain entropy is still active.

All tests are executed within a KVM guest environment without graphical
environment. The host is an Intel Core i7 Broadwell system.

3.3 LRNG Comparison With Legacy /dev/random
The first round of testing tries to compare the legacy /dev/random operation
with the LRNG operation. All tests were executed on the test system operating
as a KVM guest17.

In addition, the same tests were executed on a Linux kernel operating on
bare metal on an Intel Atom Z-530 processor. As this system is very slow and
old, an indication of whether the LRNG shows different behavior on old and
slow systems was obtained. To access the kernel log buffer, the Intel Atom
test system was booted with the kernel command line of rd.break=pre-udev
to obtain a shell immediately when the initramfs was started to stop the boot
process. All tests results from the KVM system were confirmed on the Intel
Atom system as well, supporting the conclusions drawn here.

3.3.1 Time Until Fully Initialized

The legacy /dev/random implementation feeds all entropy directly into the
nonblocking_pool until the kernel log message is recorded that the nonblocking_pool
is initialized. Only after that point, entropy is fed into the input_pool allowing
the seeding of the blocking_pool and thus generating data for /dev/random.

The DRBG also prints out a message when it is fully seeded. The following
test lists these two kernel log messages including their time stamp.

17If the tests are re-run, the dbg macro in the LRNG source code must be enabled to
generate all log output listed here.
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As mentioned above, the DRBG uses different noise sources where only the
interrupt noise source will always be present. Thus the test is first performed
with all noise sources enabled followed by disabling the fast noise sources of
CPU noise source.

Listing 2: Time until fully initialized -- LRNG using all noise sources
$ dmesg | grep " primary DRBG minimally seeded "
[ 0.808266] lrng: primary DRBG minimally seeded
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ dmesg | grep " primary DRBG fully seeded "
[ 1.063844] lrng: primary DRBG fully seeded
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ dmesg | grep " nonblocking "
[ 20.932050] random : nonblocking pool is initialized

The test shows that the primary DRBG is minimally seeded 0.6 seconds
after boot. This is around the time when the initramfs is started. The primary
DRBG is fully seeded at 1 second after boot which is before systemd injects
the legacy /dev/random seed file into /dev/random and before the initramfs
terminates. As the secondary DRBG is immediately seeded from the primary
DRBG at the time of reaching the minimally and fully seeding threshold, the
aforementioned listing applies to the secondary DRBG too.

The legacy /dev/random’s nonblocking_pool on the other hand is initial-
ized with 128 bits of entropy at around 21 seconds after boot in this test round
– other tests show that it may even be initialized after 30 seconds and more. By
that time the complete boot process of the user space is already long completed.

The following test boots the kernel with the kernel command line options of
lrng.archrandom=0 to disable the fast noise sources.

Listing 3: Time until fully initialized -- LRNG using only interrupt noise source
$ cat /sys/ module /lrng/ parameters / archrandom
0
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ dmesg | grep "DRBG minimally seeded "
[ 1.057013] lrng: primary DRBG minimally seeded
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ dmesg | grep "DRBG fully seeded "
[ 1.309164] lrng: primary DRBG fully seeded
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
[ 1.497105] lrng: inject 64 bytes with 0 bits of entropy into primary DRBG
[ 1.497108] lrng: seeding secondary DRBG with 64 bytes
[ 1.497133] lrng: inject 64 bytes with 0 bits of entropy into primary DRBG
[ 1.497134] lrng: seeding secondary DRBG with 64 bytes
[ 1.497156] lrng: inject 64 bytes with 0 bits of entropy into primary DRBG
[ 1.497157] lrng: seeding secondary DRBG with 64 bytes
[ 1.497181] lrng: inject 64 bytes with 0 bits of entropy into primary DRBG
[ 1.497182] lrng: seeding secondary DRBG with 64 bytes
[ 1.497225] lrng: inject 64 bytes with 0 bits of entropy into primary DRBG
[ 1.497226] lrng: seeding secondary DRBG with 64 bytes
[ 1.497249] lrng: inject 64 bytes with 0 bits of entropy into primary DRBG
[ 1.497250] lrng: seeding secondary DRBG with 64 bytes
[ 1.497272] lrng: inject 64 bytes with 0 bits of entropy into primary DRBG
[ 1.497273] lrng: seeding secondary DRBG with 64 bytes
[ 1.497328] lrng: inject 64 bytes with 0 bits of entropy into primary DRBG
[ 1.497339] lrng: seeding secondary DRBG with 64 bytes
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ dmesg | grep " nonblocking "
[ 33.206682] random : nonblocking pool is initialized

Even when the fast noise sources are disabled, the DRBG is minimally and
fully initialized at the time the initramfs started. Conversely, the nonblocking_pool
is initialized again long after the boot process is completed.
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During all testing, the DRBG was fully seeded before user space injected
the seed data into /dev/random as mandated by the legacy /dev/random im-
plementation. The time of user space injecting the seed data into /dev/random
marks the point at which cryptographically relevant user space applications may
be started.

As the DRBG is fully seeded at the time of initramfs, user space daemons
requiring cryptographically strong random numbers are delivered such data.

3.3.2 Entropy Delivered To First User Space Caller

Another comparison can be made between the legacy /dev/random and the
LRNG regarding the amount of entropy delivered to the first user space caller.

Again, for the LRNG, the first test is performed with all noise sources active
and the second test having the fast noise sources disabled.

Listing 4: Entropy for first user space caller -- LRNG using all noise sources
[ 0.546574] lrng: inject 68 bytes with 64 bits of entropy into primary DRBG
[ 0.546576] lrng: primary DRBG initially seeded
[ 0.546588] lrng: seeding secondary DRBG with 32 bytes
[ 0.557907] random : systemd urandom read with 3 bits of entropy available

The first user space caller obtains random numbers from a DRBG seeded
with 64 bits of entropy. The listing shows that in fact, the DRBG is seeded with
192 bits of entropy.

Listing 5: Entropy for first user space caller -- LRNG using only interrupt noise
source
[ 0.571599] lrng: inject 100 bytes with 56 bits of entropy into DRBG
[ 0.571607] lrng: seeding secondary DRBG with 32 bytes
[ 0.575029] random : systemd urandom read with 3 bits of entropy available

When the fast noise sources are disabled, the LRNG already obtained 56
bits of entropy from interrupts at the time the first user space caller. Note, the
secondary DRBG is seeded with 32 bytes from the primary DRBG when the
primary DRBG seed level is below the minimally seeded threshold. Yet, that
random number contains the entropy amount the primary DRBG was seeded
with, i.e. 56 bits in the given example.

3.3.3 Entropy In LRNG When nonblocking_pool Is Initialized

With the previous tests in mind, the question may be interesting on how much
entropy the LRNG already obtained at the time the legacy /dev/random has
its nonblocking_pool initialized.

The test is performed on an otherwise quiet system which implies that after
boot, only very few operations with little interrupt activity but also little draw
on entropy is ongoing. Hence, the DRBG is only seeded during boot which is
visible with the long time delay between the last DRBG notification and the
nonblocking_pool kernel log message. As already done for the previous tests,
the LRNG is tested once with and once without fast noise sources.

Listing 6: Entropy in LRNG when nonblocking_pool is initialized -- LRNG
using all noise sources
$ cat /proc/sys/ kernel / random / entropy_avail
2036

[ 25.852725] random : nonblocking pool is initialized

31



At the time the nonblocking_pool is initialized, the LRNG has already
produced about 2000 bits of entropy to be used with /dev/random which means
that at that time, LRNG requests at /dev/random can be satisfied for 250 bytes
right away.

Listing 7: Entropy in LRNG when nonblocking_pool is initialized -- LRNG
using only interrupt noise source
$ cat /proc/sys/ kernel / random / entropy_avail
1862

[ 32.912590] random : nonblocking pool is initialized

Even without the fast noise sources, the LRNG is able to produce 232 bytes of
random data for /dev/random by the time the nonblocking_pool is initialized
and the legacy /dev/random starts to fill its input_pool that can be drawn
from to satisfy /dev/random requests.

3.4 Statistical Tests of LRNG
After showing the comparison between the operation of the legacy /dev/random
and the LRNG, statistical tests of the quality of input and output data of the
LRNG are done and analyzed.

The statistical tests are performed for each processing step of the LRNG:

1. raw time stamp obtained from an interrupt operation,

2. result of the LFSR operation to mix time stamps into the entropy pool,

3. analysis of the boot time variances,

4. output of the DRBG for /dev/random,

5. output of the DRBG for /dev/urandom, and

6. output of the initial RNG.

3.4.1 IRQ Noise Source – Time Stamp

Using the SystemTap script lrng_irq_raw_time.stp the raw time stamps for
interrupts are recorded. Those time stamps are the input to the folding opera-
tion to fill the interrupt entropy pool18.

The first assessment is performed on the raw time stamps obtained from
the measurement. A histogram of those measurements is prepared where the
ideal would be a rectangular distribution without any spikes. Such rectangular
distribution identifies an equidistribution of the time stamps and is a prerequisite
for determining whether the data can be considered to be white noise.

To obtain that amount of data – about 55 million time stamps – the following
test approach is used: To generate time stamps, interrupts must be generated.
The large number of interrupts is generated by using a ping flood from the host.
Note, the test system is executed in a KVM guest. On the host system, a ping
flood is generated to ping the IP address of the test machine. This operation
should be considered as a worst case test as:

18Note, this SystemTap script reads out a 64-bit CPU register which returns a 64-bit value.
As we are only interested in the 32-bit value of this data cutting off the high 32 bits, the
application timetoint.c is provided to convert the SystemTap output into 32-bit integers.
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• the generation of interrupts is triggered externally from a potential adver-
sary,

• the network latency introduced with routers or switches is eliminated to
the greatest extent,

• each ping packet that triggers an interrupt is generated with the same
time delay – i.e. the ping command uses a tight loop to generate these
packets, and

• the potential adversary is able to generate large numbers of interrupts
that shall serve as entropy.

It is to be noted that the hardware used for the testing has 2 physical cores with
2 hyper-threads each. The KVM is executed with 2 virtual CPUs occupying 2
hyper-threads and the host using the other 2 hyper-threads. This reduces the
latency from the host Linux kernel scheduling as much as possible to again try
to define a worst case testing approach.

The following command is used on the host for initiating the ping flood:
sudo ping -f <TEST -IP -ADDRESS >

The obtained data is converted into the histogram provided with figure 3.2.
That figure shows in its legend the minimum entropy of the data set obtained
with the following formula:

Hmin = −log2(pmax)

with pmax describing the maximum probability of an event – the time delta.
In addition, it shows the Shannon Entropy obtained with the formula of:

H = −
N∑

i=1
pi · log2(pi)

where pi denominates the probability of an event – the time delta – and N
represents the number of events.

The histogram contains a standard Gaussian distribution with the red dotted
line using the mean and standard deviation of the collected data. The green
vertical lines are the first and third quartile of the distribution. The median of
the data set is given with the blue and the mean with the red vertical line.

Figure 3.1 presents the histogram for the raw time stamps. Note, this his-
togram is generated by using the first 5,000,000 time stamps of the test result.
The reason for limiting the number of time stamps considered is due to the
limits of R: on a 16 GB RAM system, R complained about insufficient memory
when generating an SVG with more time stamps.
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Figure 3.1: Histogram of interrupt time stamps

The result shows an almost perfect rectangular distribution. Naturally, it
may happen that some time stamp values are recorded twice or three times
which explains the few spikes. Furthermore, the use of only 10% of the original
data set to draw that figure supports the case that a few spikes are seen. Yet
the overall distribution type is an equidistribution as expected. The values for
minimum and Shannon entropy for the 5 million time stamps must be viewed
in light of the number of test records compared to the overall number space of
232. The 5 million time stamps are about 1.5 times 222. Hence, the Shannon
entropy of 22.3 bits is very close to the theoretical entropy. The minimum
entropy of 20.7 bits also reaches close to the maximum possible entropy. The
entropy values for the full data set of 55 million – which is about 1.5 times 225

– are about 25.7 bits of Shannon entropy and 23.7 bits of minimum entropy.
These entropy values are yet again close to the theoretical maximum entropy.
Using this finding, the conclusion can be drawn that when obtaining more than
232 time stamp samples, the maximum possible entropy of 32 bits would nearly
be reached for Shannon as well as minimum entropy. Hence, the figure and the
resulting statistical numbers indicate that the distribution of the time stamp
values over the possible values between 0 to 232 follows an equidistribution as
expected.

In addition to calculating of the minimum entropy above, another supporting
minimum entropy value is calculated based on the Markov model. The Markov
model and its formulas is described in [3] section 9.3.5.3. The time stamps are
32-bit values. To apply the Markov test, 32-bit values are too big. Hence, the
fast moving low bits of the time stamps are obtained from each time stamp and
converted into a bit-stream. For the following test, the low four bits are used
out of each time stamp to form the upper and lower nibble of a byte. The bytes
obtained out of two time stamps are concatenated to form a byte stream that
is processed with the Markov test. The conversion of the time stamp to the
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described byte stream is performed with the test application timetomarkov.c.
The following table lists the calculated minimum entropy using the Markov

test in relationship to the chosen step size.

Step Size Markov Min Entropy
1 3.92
2 7.84
3 11.76
4 15.67
5 19.59
6 23.50
7 27.42
8 31.34
9 35.25

Table 1: Markov test minimum entropy of interrupt time stamps

The calculated Markov minimal entropy for a given step size is always very
close to the maximum possible entropy size which is the step size times 4 bit –
the Markov minimum entropy for the different step sizes is always about 98%
of the maximum possible entropy. Hence, the time stamps contain entropy that
is very close to the maximum entropy possible.

The next analysis is performed with the time deltas. The absolute time
stamps are monotonically increasing values. Hence, the entropy is not too well
visible using this value. When calculating the first derivative of the time deltas,
the uncertainty that delivers entropy is visible in the variations of those time
deltas. The following histogram shows the distribution of the time delta varia-
tions of the recorded time stamps where again the upper 1 percentile is removed
to eliminate large outliers – note that elimination serves as an assessment of a
worst case because the outliers add more entropy to the LRNG. Figure 3.2 shows
the histogram of the time deltas.
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Figure 3.2: Histogram of interrupt time deltas

The histogram shows a wide spread of the time delta of the ping flood
interrupts. The minimum entropy is more than 11 bits and the Shannon Entropy
is more than 14 bits. As one measurement provides about one bit of entropy,
the raw entropic data contains significantly more entropy than needed.

Again, the minimum entropy following the Markov model is calculated for
the time deltas using the same consideration above: the four low bits of the time
deltas are used for an analysis with the Markov model. The conversion of the
time stamp to the time delta followed by obtaining the low 4 bits is performed
with the test application timedeltatomarkov.c.

The following table lists the calculated minimum entropy using the Markov
test in relationship to the chosen step size.

Step Size Markov Min Entropy
1 3.92
2 7.84
3 11.75
4 15.67
5 19.58
6 23.49
7 27.41
8 31.32
9 35.23

Table 2: Markov test minimum entropy of interrupt time deltas

The calculated Markov minimal entropy is almost identical to the minimum
entropy for the time stamps. It is always about 98% of the maximum possible
entropy. Hence, the time stamps contain entropy that is very close to the

36



maximum entropy possible.
The testing for figure 3.2 was conducted in a KVM virtual machine. Addi-

tional tests on Microsoft Hyper-V, Oracle VirtualBox, VMWare ESXi, and Xen
with and without para-virtualized device drivers show similar results. Though,
one major finding was that the para-virtualized device drivers for Hyper-V use
the VMBus interface to the host. VMBus, however, does not use the com-
mon Linux kernel interrupt handling code and per default would not trigger
the LRNG interrupt callback. The results on Hyper-V were obtained with the
legacy network device configuration – emulating a DEC network interface – as
well as with the default network configuration using the VMBus. This test re-
sult was the key motivation for providing a patch to the VMBus handling code
to trigger the LRNG interrupt collection function. The following table shows
the Markov test minimum entropy for the additional virtual machine tests, each
with step size 1.

Virtual Machine Monitor Markov Min Entropy
Hyper-V using Linux interrupt handler 3.94
Hyper-V using VMBus interrupt handler 3.99

VirtualBox 3.96
ESXi 3.96
Xen 3.95

Table 3: Markov test minimum entropy of interrupt time deltas on different
VMMs with step size 1

The test data for Microsoft Hyper-V (standard Linux interrupt handler as
well as VMBus interrupt handler), VMWare ESXi, Oracle VirtualBox, and Xen
show very similar test results.

IRQ Noise Source Without High-Resolution Timer The design of the
LRNG supports systems without high-resolution time stamps. Testing of that
noise source is not yet conducted as the results will be a challenge to interpret.

Due to the large uncertainty about the distribution, the LRNG_IRQ_OVERSAMPLING_FACTOR
is set to the value of 10. This implies that when the hardware does not pro-
vide a high-resolution time stamp, the entropy assumed to be present with each
interrupt is one 10th of the entropy with high-resolution time stamps.

3.4.2 IRQ Noise Source – LFSR Processed Data

Using the time stamp data stream processed with the LFSR discussed in sec-
tion 3.4.1, the following analyses were conducted.

The SystemTap script lrng_irq_raw_entropy.stp is used to obtain the
individual words of the entropy pool when processing the respective word with
the LFSR. Therefore, the result using that script shows the distribution of data
in the entropy pool.

The read words of the entropy pool are analyzed with ent showing the
following results.

Listing 8: Statistical results of folded delta -- ent tool
$ ent -b irq_raw_time .out.bin
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Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 275691904 bit file by 0 percent .

Chi square distribution for 275691904 samples is 0.11 , and randomly
would exceed this value 73.92 percent of the times .

Arithmetic mean value of data bits is 0.5000 (0.5 = random ).
Monte Carlo value for Pi is 3.141640033 ( error 0.00 percent ).
Serial correlation coefficient is 0.000029 ( totally uncorrelated = 0.0).

$ ent irq_raw_time .out.bin
Entropy = 7.999995 bits per byte.

Optimum compression would reduce the size
of this 34461488 byte file by 0 percent .

Chi square distribution for 34461488 samples is 235.64 , and randomly
would exceed this value 80.25 percent of the times .

Arithmetic mean value of data bytes is 127.5047 (127.5 = random ).
Monte Carlo value for Pi is 3.141640033 ( error 0.00 percent ).
Serial correlation coefficient is -0.000051 ( totally uncorrelated = 0.0).

The Chi-Square result from ent shows a perfect result indicating that the
data stream is considered to be white noise.

The SP800-90B minimum entropy tests are conducted with the same data
stream and show the results given in table 4. The calculated minimum entropy
is very close to the 1 bit of entropy per data bit mark, indicating that the data
set has almost full entropy.

Test Minimum Entropy per Data Bit
Bins Test 0.998

Collision Test 0.96
Compression Test 0.96
Collection Test 0.98

Markov Test with Step 1 0.998

Table 4: Minimum entropy tests (SP800-90B) of LFSR-processed data

The SP800-22rev1a statistical tests all pass.
Finally, the data stream was processed with bzip2:

Listing 9: bzip2 compression of folded data
$ ls -l irq_raw_time .out.bin
-rwxr -x---. 1 sm sm 34461488 20. Mai 23:32 irq_raw_time .out.bin
$ bzip2 -9 irq_raw_time .out.bin
$ ls -l irq_raw_time .out.bin.bz2
-rwxr -x---. 1 sm sm 34615128 20. Mai 23:32 irq_raw_time .out.bin.bz2

The file size after the “compression” operation is larger than the initial file,
indicating that no compression was possible and only the bzip2 meta data were
added.

The AIS20/31 test procedure A is completed where all tests pass.
All mentioned tests were re-performed with the different LFSR polynomials

found in the LRNG code. All results are equal to the aforementioned results,
indicating that the LFSR polynomials are appropriate and that the size of the
entropy pool does not influence the statistical properties given the chosen LFSR
polynomials.
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3.4.3 Distribution of Time Stamps During Boot

The description in chapter 2 explains that the LRNG is seeded early during the
boot process. To support that claim, the following analysis has been done:

• Record the first 50 time stamps recorded for interrupt events by the
LRNG.

• Reboot the system 50,000 times to obtain the initial time stamps for each
of that boot.

To ensure that testing of a worst-case is conducted, all measurements were
obtained with a test system executing as a KVM guest with a minimal set of
devices and minimal set of software.

The test is implemented with boottime_test_record.sh supported by
boottime_test_record.service. To execute the test, the following steps are
performed:

1. Apply patch boottime_test.diff and compile LRNG code – this patch
adds the logic to record the time stamps after boot.

2. Copy boottime_test_record.sh to /usr/local/sbin and make it exe-
cutable. Also, execute restorecon if applicable.

3. Copy boottime_test_record.service to /etc/systemd/system/.

4. Execute systemctl enable boottime_test_record.

5. Reboot and wait until reboot test completes. The test can be interrupted
by supplying the kernel command line argument of boottime_test_stop
which boots the system in normal mode. After the interruption, the test
can be continued by simply rebooting it again.

6. Execute boottime_test_conv.pl with the test results to convert them
into time deltas.

7. Execute boottime_test_dist.r with result from step 6 to obtain the
statistical results.

To compare the different boot time stamps, it is not appropriate to compare the
absolute time stamps as they depend on the state of high-resolution time stamp.
If the test is executed in a virtual machine, the high-resolution time stamp may
continue to tick during the reboot operation. Therefore, the analysis must focus
on the time deltas, i.e. the values that contain the variations which are believed
to hold entropy. Using this idea, the histogram in figure 3.3 is generated. This
figure shows the histogram of the time delta of the first and second time stamp
obtained from interrupts after boot.
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Figure 3.3: Distribution of first time delta

As figure 3.3 spans a wide spectrum of values, the distribution is not too
visible. To make the distribution more visible, the 99% quartile is printed in
figure 3.4 which removes outliers and allows a better view of the distribution.

Figure 3.4: 99% Quartile of first time delta

The distribution in figure 3.4 shows large variations of the time delta, i.e.
the variable that contains the entropy. Looking at the calculated Minimum
Entropy and Shannon Entropy values in the legend of the figures demonstrate
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that even the time delta variations of the first two time stamps after boot are
similar to the variations in the time delta at runtime of the system depicted in
figure 3.2. Therefore, it can be concluded that the variations of the time delta
during boot indicates that entropy for the LRNG is present to an equal level as
found during runtime.

To further support the analysis, the following table is generated which lists
the mean, the standard derivation, Minimum Entropy and Shannon Entropy
values for all 49 recorded time deltas:

Time Delta Mean Sigma Min E. Shannon E.
1 3062833.8 969143.6 11.9 14.4
2 3119590.1 5955328.8 10.6 13.0
3 3119542.3 1183534.2 10.4 12.7
4 3169123.3 6701369.9 10.9 13.1
5 3335203.8 14068575.8 9.5 12.0
6 3658025.1 22490319.7 9.3 11.9
7 41504201.3 29750931.0 13.3 15.4
8 31335528.7 83917312.0 13.3 15.4
9 348389141.3 414633897.4 13.6 15.5
10 1048577313.6 537924364.5 14.0 15.6
11 24755671.9 167820762.9 13.3 15.4
12 27791464.6 174272417.6 12.3 14.9
13 40291607.2 229038419.5 12.0 14.7
14 6101191.6 87888176.4 12.4 15.1
15 1871061.6 46665270.7 12.4 15.0
16 551066.8 18829722.1 12.6 15.0
17 304499.3 10237540.1 12.3 14.9
18 256659.1 5857185.4 12.1 14.9
19 304808.6 1953846.1 12.3 15.0
20 627977.5 10294735.3 13.3 15.4
21 176912.7 1646102.2 11.7 14.4
22 442046.3 9978753.7 12.6 15.2
23 158246.7 963124.3 12.0 14.7
24 222521.6 1258827.4 12.3 14.8
25 214526.3 1151931.8 12.1 14.8
26 154615.4 910690.8 11.1 14.4
27 177672.6 1004500.7 11.7 14.5
28 189688.2 1078282.8 11.8 14.5
29 165000.7 923889.6 11.2 14.1
30 146079.5 878573.1 11.0 14.0
31 153658.9 792815.2 11.0 14.1
32 162527.8 881274.2 11.3 14.3
33 155808.9 816388.3 11.0 14.0
34 141656.0 769105.7 10.9 13.9
35 154833.1 825433.4 10.9 14.0
36 161944.1 807917.6 11.2 14.1
37 165380.7 824345.6 11.0 14.2
38 149306.4 683709.3 11.4 14.3

41



39 162143.9 791188.8 11.1 14.4
40 180302.5 874298.3 11.8 14.7
41 176926.1 925924.0 11.9 14.6
42 141931.2 594531.7 11.4 14.4
43 156627.0 760098.0 10.9 14.3
44 164832.6 822648.6 11.5 14.4
45 151223.6 692047.8 11.5 14.4
46 131969.9 594910.4 11.5 14.3
47 141684.6 644875.9 11.6 14.5
48 113142.1 669510.4 11.4 14.2
49 151697.0 630606.8 11.5 14.6

The numbers presented in the table support the conclusion drawn for the first
time delta: during boot time, sufficient variations of the time deltas are present
to support the LRNG’s entropy estimate of one bit of entropy per interrupt
event. The variations are equal in size compared to the runtime of the system.

3.4.4 DRBG Output – /dev/random

The test of the output of /dev/random is performed on post-whitened data.
Hence, statistical tests are not meaningful any more to demonstrate the entropy
content. The test only demonstrates a proper implementation of the output
function avoiding implementation errors like CVE:2013-4345.

The DRBG is read via /dev/random using a prime block size showing that
the read/write pointer offset handling is done correctly. To fill the DRBG with
entropy, a large number of interrupts are generated using the ping flood again.

Listing 10: Statistical properties of LRNG /dev/random output with prime
block size
$ dd if =/ dev/ random of=file bs =29
^ C32179 +32179 Datensätze ein
32179+32179 Datensätze aus
1029728 bytes (1 ,0 MB , 1006 KiB) copied , 486 ,352 s, 2,1 kB/s

--- 130 sm@x86 -64 ~ ------------------------------------------------------------
$ ent -b file
Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 8237824 bit file by 0 percent .

Chi square distribution for 8237824 samples is 0.06 , and randomly
would exceed this value 80.14 percent of the times .

Arithmetic mean value of data bits is 0.5000 (0.5 = random ).
Monte Carlo value for Pi is 3.140944290 ( error 0.02 percent ).
Serial correlation coefficient is 0.000093 ( totally uncorrelated = 0.0).
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ ent file
Entropy = 7.999809 bits per byte.

Optimum compression would reduce the size
of this 1029728 byte file by 0 percent .

Chi square distribution for 1029728 samples is 272.84 , and randomly
would exceed this value 21.14 percent of the times .

Arithmetic mean value of data bytes is 127.4439 (127.5 = random ).
Monte Carlo value for Pi is 3.140944290 ( error 0.02 percent ).
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Serial correlation coefficient is 0.001174 ( totally uncorrelated = 0.0).

Since the Chi-Square test result indicates white noise, a proper implemen-
tation of the read/write offset pointer handling is concluded.

This test has been performed for all three types of DRBG defined in the
LRNG source code. The test results are all equivalent.

3.4.5 DRBG Output – /dev/urandom

Similarly to the /dev/random testing, /dev/urandom is read to check for po-
tential implementation errors:

Listing 11: Statistical properties of LRNG /dev/urandom output
$ dd if =/ dev/ urandom of=file count =10000
10000+0 Datensätze ein
10000+0 Datensätze aus
5120000 bytes (5 ,1 MB , 4,9 MiB) copied , 0 ,906385 s, 5,6 MB/s
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ ent file
Entropy = 7.999964 - bits per byte.

Optimum compression would reduce the size
of this 5120000 byte file by 0 percent .

Chi square distribution for 5120000 samples is 256.75 , and randomly
would exceed this value 45.74 percent of the times .

Arithmetic mean value of data bytes is 127.4657 (127.5 = random ).
Monte Carlo value for Pi is 3.142787165 ( error 0.04 percent ).
Serial correlation coefficient is -0.000281 ( totally uncorrelated = 0.0).
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ ent -b file
Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 40960000 bit file by 0 percent .

Chi square distribution for 40960000 samples is 0.66 , and randomly
would exceed this value 41.58 percent of the times .

Arithmetic mean value of data bits is 0.5001 (0.5 = random ).
Monte Carlo value for Pi is 3.142787165 ( error 0.04 percent ).
Serial correlation coefficient is 0.000098 ( totally uncorrelated = 0.0).

The ent tool’s Chi-Square indicates white noise and thus does not give any
hints to implementation errors.

Note, this type of output was obtained for all different types of DRBG
showing a perfect Chi-Square test result.

3.4.6 /dev/urandom Performance And DRBG Type

As documented above, the LRNG is capable of using all types of DRBG provided
by the Linux kernel. On the test system that executes within a KVM and on top
of an Intel Core i7 Broadwell CPU19, the following read speeds using the com-
mand dd if=/dev/urandom of=file count=50000 bs=XX are obtained where
bs is set to the read size values indicated in the following tables. These num-
bers give an indication on how much one DRBG performs better over another20

19This CPU offers AES-NI, and AVX2 that is used by the allocated AES and SHA imple-
mentations.

20Please note that the test system is a 64-bit system. On 64-bit systems, SHA-512 is faster
by a factor of almost 2 compared to SHA-256 when the output data size is segmented into 64
bytes – the SHA-512 block size.
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and are presented in table 6. This table lists the DRBG type, the type and
implementation of the underlying cipher and the performance in MBytes per
second. Please note that the read sizes have been chosen as follows: The small
read sizes are based on the buffer size of the used DRBG and do not require a
kmalloc call in the lrng_read_common function. The other values shall indicate
the performance when using higher block sizes up to the point the maximum
request size is reached. The read size of the legacy /dev/random is hard coded
to 10 bytes by the kernel.

DRNG Type Cipher Cipher Impl. Read Size Performance
HMAC DRBG SHA-256 C 32 bytes 8.9 MB/s
HMAC DRBG SHA-256 AVX2 32 bytes 11.1 MB/s
HMAC DRBG SHA-256 AVX2 128 bytes 28.3 MB/s
HMAC DRBG SHA-256 AVX2 4096 bytes 51.6 MB/s
HMAC DRBG SHA-512 C 64 bytes 13.8 MB/s
HMAC DRBG SHA-512 AVX2 64 bytes 19.5 MB/s
HMAC DRBG SHA-512 AVX2 128 bytes 31.8 MB/s
HMAC DRBG SHA-512 AVX2 4096 bytes 81.4 MB/s
Hash DRBG SHA-256 C 32 bytes 19.0 MB/s
Hash DRBG SHA-256 AVX2 32 bytes 26.9 MB/s
Hash DRBG SHA-256 AVX2 128 bytes 60.1 MB/s
Hash DRBG SHA-256 AVX2 4096 bytes 105 MB/s
Hash DRBG SHA-512 C 64 bytes 27.9 MB/s
Hash DRBG SHA-512 AVX2 64 bytes 43.8 MB/s
Hash DRBG SHA-512 AVX2 128 bytes 69.4 MB/s
Hash DRBG SHA-512 AVX2 4096 bytes 168 MB/s
CTR DRBG AES-256 C 16 bytes 15.4 MB/s
CTR DRBG AES-256 AES-NI 16 bytes 23.9 MB/s
CTR DRBG AES-256 AES-NI 128 bytes 178 MB/s
CTR DRBG AES-256 AES-NI 4096 bytes 870 MB/s
CTR DRBG AES-128 AES-NI 16 bytes 25.4 MB/s
CTR DRBG AES-128 AES-NI 128 bytes 188 MB/s
CTR DRBG AES-128 AES-NI 4096 bytes 931 MB/s
ChaCha20 ChaCha20 C 16 bytes 30 MB/s
ChaCha20 ChaCha20 C 128 bytes 187 MB/s
ChaCha20 ChaCha20 C 4096 bytes 470 MB/s

Legacy /dev/random SHA-1 C 10 bytes 12.9 MB/s

Table 6: LRNG /dev/urandom performance on 64-bit

In addition, table 7 documents the performance on 32 bit using the same
hardware to have a comparison to the 64-bit case. Note, the CTR DRBG
performance for large blocks can be increased to more than 2 GB/s when
DRBG_CTR_NULL_LEN and DRBG_OUTSCRATCHLEN in crypto/drbg.c is increased
to 4096.
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DRNG Type Cipher Cipher Impl. Read Size Performance
HMAC DRBG SHA-256 C 32 bytes 8.0 MB/s
HMAC DRBG SHA-256 C 128 bytes 18.8 MB/s
HMAC DRBG SHA-256 C 4096 bytes 34.8 MB/s
HMAC DRBG SHA-512 C 64 bytes 6.3 MB/s
HMAC DRBG SHA-512 C 128 bytes 8.3 MB/s
HMAC DRBG SHA-512 C 4096 bytes 20.6 MB/s
Hash DRBG SHA-256 C 32 bytes 18.8 MB/s
Hash DRBG SHA-256 C 128 bytes 41.4 MB/s
Hash DRBG SHA-256 C 4096 bytes 72.8 MB/s
Hash DRBG SHA-512 C 64 bytes 12.9 MB/s
Hash DRBG SHA-512 C 128 bytes 19.8 MB/s
Hash DRBG SHA-512 C 4096 bytes 41.7 MB/s
CTR DRBG AES-256 C 16 bytes 13.0 MB/s
CTR DRBG AES-256 AES-NI 16 bytes 16.1 MB/s
CTR DRBG AES-256 AES-NI 128 bytes 78.0 MB/s
CTR DRBG AES-256 AES-NI 4096 bytes 168 MB/s
CTR DRBG AES-128 AES-NI 16 bytes 18.4 MB/s
CTR DRBG AES-128 AES-NI 128 bytes 88.0 MB/s
CTR DRBG AES-128 AES-NI 4096 bytes 188 MB/s
ChaCha20 ChaCha20 C 16 bytes 20.0 MB/s
ChaCha20 ChaCha20 C 128 bytes 124 MB/s
ChaCha20 ChaCha20 C 4096 bytes 311 MB/s

Legacy /dev/random SHA-1 C 10 bytes 9.4 MB/s

Table 7: LRNG /dev/urandom performance on 32 bit

Note, to enable the different cipher implementations, they need to be stati-
cally linked into the kernel binary.

To ensure that the respective implementations of the cipher cores are used,
they must be statically linked into the kernel.

The reason for the fast processing of larger read requests lies in the concept
of the DRBG: the DRBG generates the requested number of bytes followed by
an update operation which generates a new internal state. Thus, the larger
the generate requests are, the less number of state update operations are per-
formed relative to the data size. The LRNG enforces that at most 212 bytes are
generated before an update is enforced as documented in section 2.8.1.

3.4.7 Initial Random Number Generator

The initial RNG is analyzed to verify the following properties:

• whether the self-feeding RNG ensures backtracking resistance, and

• whether the absence of the CPU noise source (which already injects white
noise into the initial RNG’s state buffer) still produces white noise.

The first step is to generate data out of the initial RNG using /dev/urandom
where the LRNG was changed as follows:
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Listing 12: LRNG: prevent initialization of DRBG
static int __init lrng_init (void)
{

return 0;
...

By not executing the lrng_init function, the DRBG is not initialized. This
implies that the initial RNG is always used when requesting random numbers.

The following result was obtained with data from the initial RNG:

Listing 13: Statistical properties of initial RNG with all noise sources
$ dd if =/ dev/ urandom of=file count =10000
10000+0 Datensätze ein
10000+0 Datensätze aus
5120000 bytes (5 ,1 MB , 4,9 MiB) copied , 0 ,330678 s, 15 ,5 MB/s
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ ent file
Entropy = 7.999964 - bits per byte.

Optimum compression would reduce the size
of this 5120000 byte file by 0 percent .

Chi square distribution for 5120000 samples is 258.35 , and randomly
would exceed this value 42.98 percent of the times .

Arithmetic mean value of data bytes is 127.5120 (127.5 = random ).
Monte Carlo value for Pi is 3.140579352 ( error 0.03 percent ).
Serial correlation coefficient is 0.000389 ( totally uncorrelated = 0.0).
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ ent -b file
Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 40960000 bit file by 0 percent .

Chi square distribution for 40960000 samples is 0.39 , and randomly
would exceed this value 53.34 percent of the times .

Arithmetic mean value of data bits is 0.5000 (0.5 = random ).
Monte Carlo value for Pi is 3.140579352 ( error 0.03 percent ).
Serial correlation coefficient is 0.000192 ( totally uncorrelated = 0.0).

The Chi-Square result indicates that white noise is returned.
In a second step, all noise sources except the mix-in of the high-resolution

time stamp are disabled. This shall show that the white noise seen for the initial
RNG is not derived from the CPU noise source or the interrupt data stream
already shown to exhibit white noise behavior, but really comes from the initial
RNG processing. The following code change is applied to the LRNG:

Listing 14: Initial RNG Using Time Stamps Only
for (i = 0; i < SHA_WORKSPACE_WORDS ; i++) {

// if ( arch_get_random_int (& arch ))
// lrng_init_state [i] ^= arch;

lrng_init_state [i] ^= random_get_entropy ();
}
/* SHA -1 update using the init RNG state */
sha_transform (hash , (u8 *)& lrng_init_state , workspace );

/* SHA -1 update with all words of the entropy pool */
BUILD_BUG_ON ( LRNG_POOL_SIZE % 16);

// for (i = 0; i < LRNG_POOL_SIZE ; i += 16)
// sha_transform (hash , (u8 *)( lrng_pool .pool + i),
// workspace );

After applying these changes, the following result was obtained – note the
read speed of the dd command compared to the previous speed which indicates
that the mentioned noise sources are disabled:
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Listing 15: Statistical properties of initial RNG with time stamps only
$ dd if =/ dev/ urandom of=file count =10000
10000+0 Datensätze ein
10000+0 Datensätze aus
5120000 bytes (5 ,1 MB , 4,9 MiB) copied , 0 ,0569363 s, 89 ,9 MB/s
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ ent file
Entropy = 7.999961 bits per byte.

Optimum compression would reduce the size
of this 5120000 byte file by 0 percent .

Chi square distribution for 5120000 samples is 278.89 , and randomly
would exceed this value 14.55 percent of the times .

Arithmetic mean value of data bytes is 127.4679 (127.5 = random ).
Monte Carlo value for Pi is 3.140227789 ( error 0.04 percent ).
Serial correlation coefficient is -0.000056 ( totally uncorrelated = 0.0).
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ ent -b file
Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 40960000 bit file by 0 percent .

Chi square distribution for 40960000 samples is 0.83 , and randomly
would exceed this value 36.27 percent of the times .

Arithmetic mean value of data bits is 0.4999 (0.5 = random ).
Monte Carlo value for Pi is 3.140227789 ( error 0.04 percent ).
Serial correlation coefficient is 0.000036 ( totally uncorrelated = 0.0).

Again, the Chi-Square result indicates white noise.
This allows to draw the conclusion that the initial RNG produces white noise

due to its processing. Hence, the initial RNG is implemented appropriately.

3.4.8 ChaCha20 Random Number Generator

The ChaCha20 DRNG is analyzed the same way as the initial RNG verify the
following properties:

• whether the self-feeding RNG ensures backtracking resistance, and

• whether the absence of the CPU noise source (which already injects white
noise into the initial RNG’s state buffer) still produces white noise.

The compilation of the LRNG code is changed such that the ChaCha20 DRNG is
compiled. Also, for testing, the fast noise sources have been disabled to clearly
demonstrate that the backtracking resistance is ensured. This is followed by
obtaining random numbers from /dev/urandom and calculating the statistical
properties:

Listing 16: Statistical properties of ChaCha20 RNG with interrupt noise source
$ cat /proc/sys/ kernel / random / lrng_type
DRNG: ChaCha20
DRNG security strength : 256 bits
entropy pool read hash: sha1
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ dd if =/ dev/ urandom of=file count =1000
1000+0 Datensätze ein
1000+0 Datensätze aus
512000 bytes (512 kB , 500 KiB) copied , 0 ,00341658 s, 150 MB/s
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ ent file
Entropy = 7.999639 bits per byte.
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Optimum compression would reduce the size
of this 512000 byte file by 0 percent .

Chi square distribution for 512000 samples is 257.07 , and randomly
would exceed this value 45.19 percent of the times .

Arithmetic mean value of data bytes is 127.4761 (127.5 = random ).
Monte Carlo value for Pi is 3.147902921 ( error 0.20 percent ).
Serial correlation coefficient is 0.001163 ( totally uncorrelated = 0.0).
--- 0 sm@x86 -64 ~ --------------------------------------------------------------
$ ent -b file
Entropy = 1.000000 bits per bit.

Optimum compression would reduce the size
of this 4096000 bit file by 0 percent .

Chi square distribution for 4096000 samples is 0.12 , and randomly
would exceed this value 73.24 percent of the times .

Arithmetic mean value of data bits is 0.5001 (0.5 = random ).
Monte Carlo value for Pi is 3.147902921 ( error 0.20 percent ).
Serial correlation coefficient is 0.000028 ( totally uncorrelated = 0.0).

The Chi-Square result indicates white noise and thus allows the conclusion
that the ChaCha20 DRNG operates as expected and that backtracking resis-
tance is implemented correctly.

3.5 Usability Tests
To show that the LRNG is a drop-in replacement for the legacy /dev/random,
the following usability tests were executed:

• Parallel execution of cat /dev/urandom > /dev/null on all available
cores for half a day to verify stability. This test allowed verification of
the reseed operation of the secondary DRBG when reaching the threshold
for the maximum number of random numbers to be generated.

• Parallel execution of cat /dev/urandom > /dev/urandom on all available
cores for half a day to verify stability.

• Parallel execution of cat /dev/random > /dev/null on all available cores
for an hour to verify stability.

• Execution of cat /dev/urandom > /dev/urandom and verification that
writing of data from user space into the device files does not reset the
reseed threshold or the reseed timer for the secondary DRBG. I.e. even
while executing this command, the secondary DRBG reseeds after 600
seconds or reaching 217 requests, whatever is reached first. This behavior
ensures that unprivileged user space cannot block the reseeding of the
secondary DRBG.

• Execution of cat /dev/random without fast noise sources to drain the
entropy pool and then send a ping flood to the test system to verify that
/dev/random resumes generation of random data when entropy is received
via new interrupts.

• Execution of cat /dev/random without fast noise sources to drain the
entropy pool and then observe /proc/sys/kernel/random/entropy_avail
to reach the value in /proc/sys/kernel/random/read_wakeup_threshold.

48



When the threshold is reached, new data is printed with the cat com-
mand. This test is repeated by setting the read_wakeup_threshold to
the minimum value of 32 to verify that new data is printed with the
cat command when reaching this lower value. This test verifies that the
read_wakeup_threshold is enforced properly and that the reader wakeup
calls are placed at the right spots in the LRNG code.

• During the parallel execution of cat /dev/random without fast noise
sources the entropy pool is carefully filled until reaching the wakeup thresh-
old. Upon reaching the wakeup threshold, it is verified that only one cat
process is woken up and returns random data. This test shows that en-
tropy is only used once.

• Use of an the jitterentropy-rngd21 user space daemon, disabling the
fast noise sources and execution of cat /dev/random to verify that the
injection of entropy via the RNDADDENTROPY IOCTL resumes the generation
of random data for /dev/random. In addition, this test shows that the
user space daemon as well as the LRNG is woken up at the right time –
i.e. the reader and writer wakeup calls in the LRNG are placed at the
right spots.

• Leaving the LRNG in peace on a very quiet system to verify that the
automatic reseed operation after reaching the timer-based reseed threshold
is performed. This test also shows that the entropy gathered within that
time frame from interrupts with disabled fast noise sources is more than
256 bits. I.e. the reseeding after the expiry of the timer on a very quiet
system will not drain the entropy pool.

• Executing cat /dev/urandom > /dev/random and in parallel executing
cat /dev/random where the LRNG does not use the fast noise sources.
It is expected that /dev/random will not produce random data beyond
the point where the entropy pool is drained. This test shall show that
a simple writing of data into /dev/random or /dev/urandom will not be
considered as entropic data to generate fresh data for /dev/random.

• Execution of the LRNG in a virtual environment to verify that it receives
sufficient entropy there as well.

• Execution of the LRNG on x86 32-bit, x86 64-bit, ARM 32-bit, and MIPS
32-bit systems.

4 Integration Into Linux Kernel
The LRNG can be integrated into the kernel in different ways. The following
options are currently seen:

1. Replacing the legacy /dev/random implementation in drivers/char/random.c
which implies that the kernel crypto API along with its DRBG must al-
ways be compiled.

21This daemon is available at http://www.chronox.de/jent.html.
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2. Make the LRNG a compile time option that can be enabled when the
kernel crypto API is selected. If the LRNG is selected, the legacy /de-
v/random code is not compiled. This would allow users not wanting the
kernel crypto API always in the kernel to keep it excluded.

3. Having the LRNG changed to use the SHA-1 implementation from lib/sha1.c
and implement its own DRBG. This has the drawback that the LRNG is
stuck with a software SHA-1 implementation. Also, there would poten-
tially two implementations of the DRBG be present in the kernel. Finally,
the private DRBG implementation may be hard to test and validate – the
use of a testable and validated DRBG as one of the goals of the chosen
LRNG approach would be lost.

4. Use the current DRBG implementations and replace the cipher invoca-
tions to call the lib/sha1.c code. This would involve extensive changes
to crypto/drbg.c. Furthermore, this would limit the choice to a Hash
DRBG with SHA-1 core and a cryptographic strength of 128 bits as de-
fined in SP800-90A.

The author would disregard options 3 and 4. Options 1 and 2 are considered
technically equal.

To support a first testing phase of the LRNG, a patch following option 2 is
provided.

A Thanks
Special thanks for providing input as well as mathematical support goes to:

• DJ Johnston

• Yi Mao

• Sandy Harris

• Dr. Matthias Peter

• Quentin Gouchet

B Source Code Availability
The source code, this document as well as the test code for all aforementioned
tests is available at http://www.chronox.de/lrng.html.
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D License
The implementation of the Linux Random Number Generator, all support mech-
anisms, the test cases and the documentation are subject to the following license.

Copyright Stephan Müller <smueller@chronox.de>, 2016.
Redistribution and use in source and binary forms, with or without modifi-

cation, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
and the entire permission notice in its entirety, including the disclaimer of
warranties.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
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ALTERNATIVELY, this product may be distributed under the terms of the
GNU General Public License, in which case the provisions of the GPL are re-
quired INSTEAD OF the above restrictions. (This clause is necessary due to a
potential bad interaction between the GPL and the restrictions contained in a
BSD-style copyright.)

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ALL OF WHICH ARE HEREBY DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF NOT
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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